The cohomology of the Brylinski double complex of Poisson manifolds, and the quantum de Rham cohomology
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_10_a7,
     author = {V. V. Shurygin (Jr.)},
     title = {The cohomology of the {Brylinski} double complex of {Poisson} manifolds, and the quantum de {Rham} cohomology},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--81},
     publisher = {mathdoc},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a7/}
}
TY  - JOUR
AU  - V. V. Shurygin (Jr.)
TI  - The cohomology of the Brylinski double complex of Poisson manifolds, and the quantum de Rham cohomology
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 75
EP  - 81
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_10_a7/
LA  - ru
ID  - IVM_2004_10_a7
ER  - 
%0 Journal Article
%A V. V. Shurygin (Jr.)
%T The cohomology of the Brylinski double complex of Poisson manifolds, and the quantum de Rham cohomology
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 75-81
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_10_a7/
%G ru
%F IVM_2004_10_a7
V. V. Shurygin (Jr.). The cohomology of the Brylinski double complex of Poisson manifolds, and the quantum de Rham cohomology. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 75-81. http://geodesic.mathdoc.fr/item/IVM_2004_10_a7/

[1] Brylinski J.-L., “A differential complex for Poisson manifolds”, J. Diff. Geom., 28 (1988), 93–114 | MR | Zbl

[2] Vorobev Yu. M., Karasev M. V., “O puassonovykh mnogoobraziyakh i skobke Skhoutena”, Funkts. analiz i prilozh., 22:1 (1988), 1–11 | MR

[3] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Diff. Geom., 12:2 (1977), 253–300 | MR | Zbl

[4] Vaisman I., “Remarks on the Lichnerovicz–Poisson cohomology”, Ann. Inst. Fourier Grenoble, 40 (1990), 951–963 | MR | Zbl

[5] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18:3 (1983), 523–557 | MR | Zbl

[6] Huebschmann J., “Poisson cohomology and quantization”, J. für reine und angew. Math., 408 (1990), 57–113 | MR | Zbl

[7] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 | DOI | MR | Zbl

[8] Cao H.-D., Zhou J., On quantum de Rham cohomology, Preprint , 1998, 36 pp. math.DG/9806157

[9] Koszul J.-L., “Crochet de Schouten–Nijenhuis et cohomologie”, Elie Cartan et les Math. d'Aujour d'Hui, Astérisque hors-série, 1985, 257–271 | MR | Zbl

[10] Michor P. W., “Remarks on the Schouten-Nijenhuis bracket”, Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II, 16 (1987), 207–215 | MR | Zbl