On metrics that arise on surfaces of constant mean curvature
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 71-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_10_a6,
     author = {V. T. Fomenko},
     title = {On metrics that arise on surfaces of constant mean curvature},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--74},
     publisher = {mathdoc},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - On metrics that arise on surfaces of constant mean curvature
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 71
EP  - 74
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/
LA  - ru
ID  - IVM_2004_10_a6
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T On metrics that arise on surfaces of constant mean curvature
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 71-74
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/
%G ru
%F IVM_2004_10_a6
V. T. Fomenko. On metrics that arise on surfaces of constant mean curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 71-74. http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/

[1] Blaschke W., Einführung in die Differentialgeometrie, Springer, Berlin, 1950, 146 s. | MR | Zbl

[2] Aminov Yu. A., Minimalnye poverkhnosti, Izd-vo Kharkovsk. un-ta, Kharkov, 1978, 126 pp.

[3] Pinl M., “Über einen Satz von G. Ricci–Curbastro und die Gaussche Krümmung der Minimalflächen”, Arch. Math., 4:5/6 (1953), 369–373 | DOI | MR | Zbl

[4] Lawson H. B. Jr., “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 24 (1971), 151–161 | DOI | MR | Zbl

[5] Lawson H. B. Jr., Minimal varieties in constant curvature manifolds, Ph. D. Thesis, Stanford University, 1968

[6] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956, 260 pp. | MR