On metrics that arise on surfaces of constant mean curvature
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 71-74
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2004_10_a6,
author = {V. T. Fomenko},
title = {On metrics that arise on surfaces of constant mean curvature},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {71--74},
year = {2004},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/}
}
V. T. Fomenko. On metrics that arise on surfaces of constant mean curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 71-74. http://geodesic.mathdoc.fr/item/IVM_2004_10_a6/
[1] Blaschke W., Einführung in die Differentialgeometrie, Springer, Berlin, 1950, 146 s. | MR | Zbl
[2] Aminov Yu. A., Minimalnye poverkhnosti, Izd-vo Kharkovsk. un-ta, Kharkov, 1978, 126 pp.
[3] Pinl M., “Über einen Satz von G. Ricci–Curbastro und die Gaussche Krümmung der Minimalflächen”, Arch. Math., 4:5/6 (1953), 369–373 | DOI | MR | Zbl
[4] Lawson H. B. Jr., “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 24 (1971), 151–161 | DOI | MR | Zbl
[5] Lawson H. B. Jr., Minimal varieties in constant curvature manifolds, Ph. D. Thesis, Stanford University, 1968
[6] Norden A. P., Teoriya poverkhnostei, GITTL, M., 1956, 260 pp. | MR