On the metric space of all 2-nets of a space of nonpositive curvature
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 57-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_10_a4,
     author = {E. N. Sosov},
     title = {On the metric space of all 2-nets of a space of nonpositive curvature},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--60},
     publisher = {mathdoc},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a4/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - On the metric space of all 2-nets of a space of nonpositive curvature
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 57
EP  - 60
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_10_a4/
LA  - ru
ID  - IVM_2004_10_a4
ER  - 
%0 Journal Article
%A E. N. Sosov
%T On the metric space of all 2-nets of a space of nonpositive curvature
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 57-60
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_10_a4/
%G ru
%F IVM_2004_10_a4
E. N. Sosov. On the metric space of all 2-nets of a space of nonpositive curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 57-60. http://geodesic.mathdoc.fr/item/IVM_2004_10_a4/

[1] Kuratovskii K., Topologiya, t. 1, M., Mir, 1966, 594 pp. | MR

[2] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR

[3] Efremovich V. A., “Neekvimorfnost prostranstv Evklida i Lobachevskogo”, UMN, 4:2 (1949), 178–179

[4] Sosov E. N., “On Hausdorff intrinsic metric”, Lobachevskii J. of Math., 8 (2001), 185–189 | MR | Zbl

[5] Busemann H., Phadke B. B., Spaces with distinguished geodesics, Marsel Dekker Inc., New York–Basel, 1987, 159 pp. | MR | Zbl

[6] Nut Yu. Yu., Geometriya Lobachevskogo v analiticheskom izlozhenii, Izd-vo AN SSSR, M., 1961, 310 pp. | MR