The Ehresmann connection for foliations with singularities, and the global stability of leaves
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_10_a3,
     author = {N. I. Zhukova},
     title = {The {Ehresmann} connection for foliations with singularities, and the global stability of leaves},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--56},
     publisher = {mathdoc},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a3/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - The Ehresmann connection for foliations with singularities, and the global stability of leaves
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 45
EP  - 56
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_10_a3/
LA  - ru
ID  - IVM_2004_10_a3
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T The Ehresmann connection for foliations with singularities, and the global stability of leaves
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 45-56
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_10_a3/
%G ru
%F IVM_2004_10_a3
N. I. Zhukova. The Ehresmann connection for foliations with singularities, and the global stability of leaves. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 45-56. http://geodesic.mathdoc.fr/item/IVM_2004_10_a3/

[1] Blumenthal R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[2] Kashiwabara S., “The decomposition of a differentiable manifolds and its applications”, Tohoku Math. J., 11:1 (1959), 43–53 | DOI | MR | Zbl

[3] Hermann R., “On the differential geometry of foliations”, Ann. of Math., 72:3 (1960), 445–457 | DOI | MR | Zbl

[4] Shapiro Ya. L., Zhukova N. I., “O globalnoi strukture privodimykh rimanovykh mnogoobrazii”, Izv. vuzov. Matematika, 1980, no. 10, 60–62 | MR | Zbl

[5] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[6] Stefan P., “Accessible sets, orbits and foliations with singularities”, Proc. London Math. Soc., 29:4 (1974), 699–713 | DOI | MR | Zbl

[7] Dazord P., “Holonomie des feuilletages singuliers”, C. R. Acad. Sci. Paris, 298:2 (1984), 2–30 | MR

[8] Koike N., “Ehresmann connections for a foliation on a manifold with boundary”, SUT J. Math., 30 (1994), 147–158 | MR | Zbl

[9] Zhukova N. I., “Svoistva grafikov eresmanovykh sloenii”, Vestn. Nizhegorodsk. un-ta. Ser. matem., 2004, no. 1, 73–87

[10] Zhukova N. I., “Kriterii stabilnosti sloev rimanovykh sloenii s osobennostyami”, Izv. vuzov. Matematika, 1992, no. 4, 88–91 | MR | Zbl

[11] Piatkowski A., “The $*$-holonomy group of Stefan suspension of a diffeomorphism”, Ann. Pol. Math., 58:2 (1993), 123–129 | MR | Zbl

[12] Zhukova N. I., “Grafik sloeniya so svyaznostyu Eresmana i stabilnost sloev”, Izv. vuzov. Matematika, 1994, no. 2, 78–81 | MR | Zbl

[13] Tamura I., Topologiya sloenii, Mir, M., 1979, 317 pp. | MR | Zbl

[14] Blumenthal R., Hebda J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math. Oxford, 35:140 (1984), 383–392 | DOI | MR | Zbl

[15] Zukova N., “On the stability of leaves of Riemannian foliations”, Ann. of Global Analysis and Geometry, 5 (1987), 261–271 | DOI | MR

[16] Reinhart B. L., “Foliated manifolds with bundle-like metrics”, Ann. of Math., 69:1 (1959), 119–132 | DOI | MR | Zbl

[17] Michor P. W., Transformation groups, Lecture Notes of a course in Vienna, 1997, 94 pp.

[18] Zhukova N. I., “Sloeniya, soglasovannye s sistemami putei”, Izv. vuzov. Matematika, 1989, no. 7, 5–13 | MR | Zbl