Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_10_a1, author = {Yu. A. Aminov and Ya. Cheshlinskii}, title = {Isometric immersions of domains of the {Lobachevskii} space into spheres and {Euclidean} spaces, and a geometric interpretation of a spectral parameter}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {19--32}, publisher = {mathdoc}, number = {10}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a1/} }
TY - JOUR AU - Yu. A. Aminov AU - Ya. Cheshlinskii TI - Isometric immersions of domains of the Lobachevskii space into spheres and Euclidean spaces, and a geometric interpretation of a spectral parameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 19 EP - 32 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_10_a1/ LA - ru ID - IVM_2004_10_a1 ER -
%0 Journal Article %A Yu. A. Aminov %A Ya. Cheshlinskii %T Isometric immersions of domains of the Lobachevskii space into spheres and Euclidean spaces, and a geometric interpretation of a spectral parameter %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2004 %P 19-32 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2004_10_a1/ %G ru %F IVM_2004_10_a1
Yu. A. Aminov; Ya. Cheshlinskii. Isometric immersions of domains of the Lobachevskii space into spheres and Euclidean spaces, and a geometric interpretation of a spectral parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 19-32. http://geodesic.mathdoc.fr/item/IVM_2004_10_a1/
[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980, 319 pp. | MR
[2] Sym A., “Soliton surfaces and their application (soliton geometry from spectral problems)”, Lect. Notes Phys., 239, 1985, 154–231 | DOI | MR | Zbl
[3] Cieśliński J., “A generalized formula for integrable classes of surfaces in Lie algebras”, J. Math. Phys., 38 (1997), 4255–4272 | DOI | MR | Zbl
[4] Sym A., “Soliton surfaces”, Lett. Nuovo Cim., 33:12 (1982), 394–400 | DOI | MR
[5] Sym A., “Soliton surfaces. II. Geometric unification of solvable nonlinearities”, Lett. Nuovo Cim., 36 (1983), 307–312 | DOI | MR
[6] Doliwa A., Santini P., “The integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy”, J. Math. Phys., 36 (1995), 1259–1273 | DOI | MR | Zbl
[7] Doliwa A., Santini P., “The integrable dynamics of a discrete curve”, Symmetries and integrability of difference equations, 9, eds. D. Levi, L. Vinet, P. Winternitz, CRM Proc. Lect. Notes, AMS, Providence, 1996, 91–102 | MR | Zbl
[8] Aminov Yu. A., “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236:3 (1977), 521–524 | MR | Zbl
[9] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Matem. sb, 111:3 (1980), 402–433 | MR | Zbl
[10] Tenenblat K., Terng C. L., “Bäcklund's theorem for $n$-dimensional submanifolds of $R^{2n-1}$”, Ann. Math., 111:3 (1980), 477–490 | DOI | MR | Zbl
[11] Terng C. L., “A higher dimension generalization of the sine-Gordon equation and its soliton theory”, Ann. Math., 111:3 (1980), 491–510 | DOI | MR | Zbl
[12] Ablowitz M. J., Beals R., Tenenblat K., “On the solution of the generalized wave and generalized sine-Gordon equations”, Stud. Appl. Math., 74:3 (1986), 177–203 | MR | Zbl
[13] Ferus D., Pedit F., “Isometric immersions of space forms and soliton theory”, Math. Ann., 305 (1996), 329–342 | DOI | MR | Zbl
[14] Cieśliński J. L., Aminov Yu. A., “A geometric interpretation of the spectral problem for the generalized sine-Gordon system”, J. Phys. A Math. Gen., 34 (2001), L153–L159 | DOI | MR | Zbl
[15] Moore J. D., “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–166 | MR | Zbl
[16] Budinich P., Trautman A., The spinorial chessboard, Springer-Verlag, 1988, 128 pp. | MR | Zbl
[17] Porteous I. R., Clifford algebras and the classical groups, Cambridge Univ. Press, 1995, 295 pp. | MR | Zbl
[18] Cieśliński J., “The spectral interpretation of $n$-spaces of constant negative curvature immersed in $R^{2n-1}$”, Phys. Lett., 236 (1997), 425–430 | DOI | MR | Zbl
[19] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v evklidovy prostranstva s ploskoi normalnoi svyaznostyu. Model kalibrovochnogo polya”, Matem. sb., 137:3 (1988), 275–299 | MR | Zbl
[20] Aminov Yu. A., New ideas in differential geometry of submanifolds, Acta Academic, Kharkov, 1998, 114 pp. | MR
[21] Bobenko A. I., Harmonic maps and integrable systems, Aspects of Mathematics, 23, eds. A. P. Fordy, J. C. Wood, Vieweg, Brunswick, 1994 | MR
[22] Bobenko A., Pinkall U., “Discrete surfaces with constant negative gaussian curvature and the Hirota equation”, J. Diff. Geom., 43 (1996), 527–611 | MR | Zbl
[23] Aminov Yu. A., Gontcharova O., “An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface”, Math. Fiz., Analiz, Geom., 6 (1999), 3–9 | MR | Zbl
[24] Aminov Yu. A., Rabelo M. L., “On toroidal submanifolds of constant negative curvature”, Math. Fiz., Analiz, Geom., 2 (1995), 502–513 | MR
[25] Dajczer M., Tojeiro R., “An extension of the classical Ribaucour transformation”, Proc. London Math. Soc., 85 (2002), 211–232 | DOI | MR | Zbl
[26] Gollek H., “Bäcklund transformations, matrix-Riccati systems and isometric immersions of space forms into space forms”, Coll. Math. Soc. J. Bolyai., 56 (1989), 359–385 | MR
[27] Rabelo M. L., Tenenblat K., “Toroidal submanifolds of constant non-positive curvature”, In memoriam N. I. Lobachevskii, III, Part 1, Izd-vo Kazansk. un-ta, Kazan, 1995, 135–159
[28] Tenenblat K., Transformations of manifolds and applications to differential equations, Addison Wesley, Longman, 1998, 209 pp. | MR