Induced connections on manifolds in spaces with fundamental groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_10_a0,
     author = {M. A. Akivis and V. V. Goldberg and A. V. Chakmazyan},
     title = {Induced connections on manifolds in spaces with fundamental groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_10_a0/}
}
TY  - JOUR
AU  - M. A. Akivis
AU  - V. V. Goldberg
AU  - A. V. Chakmazyan
TI  - Induced connections on manifolds in spaces with fundamental groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 3
EP  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_10_a0/
LA  - ru
ID  - IVM_2004_10_a0
ER  - 
%0 Journal Article
%A M. A. Akivis
%A V. V. Goldberg
%A A. V. Chakmazyan
%T Induced connections on manifolds in spaces with fundamental groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 3-18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_10_a0/
%G ru
%F IVM_2004_10_a0
M. A. Akivis; V. V. Goldberg; A. V. Chakmazyan. Induced connections on manifolds in spaces with fundamental groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2004), pp. 3-18. http://geodesic.mathdoc.fr/item/IVM_2004_10_a0/

[1] Finikov S. P., Teoriya kongruentsii, GITTL, M.–L., 1950, 528 pp. | MR

[2] Akivis M. A., Goldberg V. V., Differential geometry of varieties with degenerate Gauss maps, Springer-Verlag, New York, 2004, 276 pp. | MR

[3] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds, North-Holland, Amsterdam, 1993, 374 pp. | MR | Zbl

[4] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl

[5] Kobayashi S., Nomizu K., Foundations of differential geometry, I, Interscience Publishers, John Wiley Sons, Inc., New York–London, 1963, 340 pp. | MR | Zbl

[6] Cartan É., Riemannian geometry in an orthogonal frame, World Sci. Publ. Co., Inc., River Edge, NJ, 2001, 277 pp. | MR

[7] Akivis M. A., Goldberg V. V., “Normal connections of a submanifold in a projective space”, Proc. of the Conference on Differential Geometry, Hamiltonian Systems and Operator Theory (Univ. of West Indies, Mona Campus, Jamaica, Feb. 7–11, 1994), 1995, 137–158

[8] Atanasyan L. S., “Osnaschennye mnogoobraziya chastnogo vida v mnogomernom affinnom prostranstve”, Tr. semin. po vektorn. i tenzorn. analizu, 9, MGU, M., 1952, 351–410 | MR

[9] Akivis M. A., Chakmazyan A. V., “Ob osnaschennykh podmnogoobraziyakh affinnogo prostranstva, dopuskayuschikh parallelnoe normalnoe vektornoe pole”, DAN ArmSSR, 60:3 (1975), 137–143 | MR | Zbl

[10] Akivis M. A., Chakmazyan A. V., “O podmnogoobraziyakh evklidova prostranstva s ploskoi normalnoi svyaznostyu”, DAN ArmSSR, 62:2 (1976), 75–81 | MR | Zbl

[11] Akivis M. A., Chakmazyan A. V., “Dual-normalized submanifolds and hyperbands of curvature”, Rend. Semin. matem. Messina, Ser. II, 8, 2001–2002, 13–23 | MR

[12] Chakmazyan A. V., “Normalizovannoe po Nordenu podmnogoobrazie v $P^n$ s parallelnym normalnym podrassloeniem”, Matem. zametki, 22:5 (1977), 649–662 | Zbl

[13] Chakmazyan A. V., “Svyaznost v normalnykh rassloeniyakh normalizovannogo podmnogoobraziya $V^m$ v $P^n$”, Itogi nauki i tekhn. Probl. geometrii, 10, VINITI, M., 1978, 55–74 | MR

[14] Chakmazyan A. V., Normalnye svyaznosti v geometrii podmnogoobrazii, Izd-vo Armyansk. gos. ped. inst., Erevan, 1990, 116 pp. | MR