Spaces with a graph norm and stengthened Sobolev spaces.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 46-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_9_a8,
     author = {M. R. Timerbaev},
     title = {Spaces with a graph norm and stengthened {Sobolev} {spaces.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--53},
     publisher = {mathdoc},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_9_a8/}
}
TY  - JOUR
AU  - M. R. Timerbaev
TI  - Spaces with a graph norm and stengthened Sobolev spaces.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 46
EP  - 53
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_9_a8/
LA  - ru
ID  - IVM_2003_9_a8
ER  - 
%0 Journal Article
%A M. R. Timerbaev
%T Spaces with a graph norm and stengthened Sobolev spaces.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 46-53
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_9_a8/
%G ru
%F IVM_2003_9_a8
M. R. Timerbaev. Spaces with a graph norm and stengthened Sobolev spaces.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 46-53. http://geodesic.mathdoc.fr/item/IVM_2003_9_a8/

[1] Timerbaev M. R., “Prostranstva s normoi grafika i usilennye prostranstva Soboleva, I”, Izv. vuzov. Matematika, 2003, no. 5, 55–65 | MR | Zbl

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[3] Ioffe A. D., Levi V. L., “Subdifferentsialy vypuklykh funktsii”, Tr. Mosk. matem. o-va, 26, 1972, 3–73 | MR | Zbl

[4] Antontsev S. N., Meirmanov A. M., Matematicheskie modeli dvizheniya poverkhnostnykh i podzemnykh vod, Izd-vo Novosibirsk. un-ta, Novosibirsk, 1979, 79 pp.

[5] Glazyrina L. L., Pavlova M. F., “Raznostnaya skhema resheniya zadachi sovmestnogo dvizheniya gruntovykh i poverkhnostnykh vod”, Izv. vuzov. Matematika, 1984, no. 9, 72–75 | MR | Zbl

[6] Glazyrina L. L., Pavlova M. F., “O razreshimosti odnogo nelineinogo evolyutsionnogo neravenstva teorii sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod”, Izv. vuzov. Matematika, 1997, no. 4, 20–31 | MR | Zbl

[7] Dautov R. Z., Karchevskii M. M., Fedotov E. M., “Ob odnom metode resheniya trekhmernykh statsionarnykh zadach tipa sosredotochennoi emkosti”, Aktualnye problemy vychislitelnoi i prikladnoi matematiki, Tez. dokl. Vsesoyuzn. konf., VTs SO AN SSSR, Novosibirsk, 1987, 68

[8] D'akonov E. G., Optimization in solving elliptic problems, Boca Raton, 1996

[9] Dyakonov E. G., “Novyi podkhod k kraevym usloviyam Dirikhle, osnovannyi na ispolzovanii usilennykh prostranstv Soboleva”, Dokl. RAN, 352:5 (1997), 590–594 | MR

[10] Dyakonov E. G., “Usilennye prostranstva Soboleva i nekotorye novye tipy ellipticheskikh kraevykh zadach”, Differents. uravneniya, 33:4 (1997), 532–539 | MR

[11] Dyakonov E. G., “Otsenki $N$-poperechnikov v smysle Kolmogorova dlya nekotorykh kompaktov v usilennykh prostranstvakh Soboleva”, Izv. vuzov. Matematika, 1997, no. 4, 32–50 | MR

[12] Yakovlev G. N., “Granichnye svoistva funktsii klassa $W_p^{(l)}$ na oblastyakh s uglovymi tochkami”, DAN SSSR, 140:1 (1961), 73–76 | MR | Zbl

[13] Necas J., Les methodes directes en theorie des equations elliptiques, Masson, Paris; Academia, Pragua, 1967, 346 pp. | MR

[14] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 380 pp. | MR