Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_9_a7, author = {E. N. Sosov}, title = {On the best $N$-nets of bounded closed convex sets in a special metric space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--45}, publisher = {mathdoc}, number = {9}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/} }
E. N. Sosov. On the best $N$-nets of bounded closed convex sets in a special metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 42-45. http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/
[1] Belobrov P. K., “O chebyshevskoi tochke sistemy mnozhestv”, Izv. vuzov. Matematika, 1966, no. 6, 18–24 | MR | Zbl
[2] Belobrov P. K., “K voprosu o chebyshevskom tsentre mnozhestva”, Izv. vuzov. Matematika, 1964, no. 1, 3–9 | MR | Zbl
[3] Garkavi A. L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl
[4] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR
[5] Liskovets O. A., “Nekorrektnye zadachi i ustoichivost kvazireshenii”, Sib. matem. zhurn., 10:2 (1969), 373–385
[6] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR
[7] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestva v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR
[8] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp. | MR
[9] Sosov E. N., “Ob approksimativnykh svoistvakh mnozhestv v spetsialnykh metricheskikh prostranstvakh”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR | Zbl
[10] Sosov E. N., “On existence and uniqueness of Chebyshev center of bounded set in a special geodesic space”, Lobachevskii J. Math., 7 (2000), 43–45 | MR | Zbl