On the best $N$-nets of bounded closed convex sets in a special metric space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 42-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_9_a7,
     author = {E. N. Sosov},
     title = {On the best $N$-nets of bounded closed convex sets in a special metric space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--45},
     publisher = {mathdoc},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - On the best $N$-nets of bounded closed convex sets in a special metric space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 42
EP  - 45
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/
LA  - ru
ID  - IVM_2003_9_a7
ER  - 
%0 Journal Article
%A E. N. Sosov
%T On the best $N$-nets of bounded closed convex sets in a special metric space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 42-45
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/
%G ru
%F IVM_2003_9_a7
E. N. Sosov. On the best $N$-nets of bounded closed convex sets in a special metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 42-45. http://geodesic.mathdoc.fr/item/IVM_2003_9_a7/

[1] Belobrov P. K., “O chebyshevskoi tochke sistemy mnozhestv”, Izv. vuzov. Matematika, 1966, no. 6, 18–24 | MR | Zbl

[2] Belobrov P. K., “K voprosu o chebyshevskom tsentre mnozhestva”, Izv. vuzov. Matematika, 1964, no. 1, 3–9 | MR | Zbl

[3] Garkavi A. L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl

[4] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR

[5] Liskovets O. A., “Nekorrektnye zadachi i ustoichivost kvazireshenii”, Sib. matem. zhurn., 10:2 (1969), 373–385

[6] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR

[7] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestva v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR

[8] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp. | MR

[9] Sosov E. N., “Ob approksimativnykh svoistvakh mnozhestv v spetsialnykh metricheskikh prostranstvakh”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR | Zbl

[10] Sosov E. N., “On existence and uniqueness of Chebyshev center of bounded set in a special geodesic space”, Lobachevskii J. Math., 7 (2000), 43–45 | MR | Zbl