The degree of equivariant mappings with a value in classes of equivariant bordisms and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 17-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_9_a3,
     author = {I. Yu. Zolotarev},
     title = {The degree of equivariant mappings with a value in classes of equivariant bordisms and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--21},
     publisher = {mathdoc},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_9_a3/}
}
TY  - JOUR
AU  - I. Yu. Zolotarev
TI  - The degree of equivariant mappings with a value in classes of equivariant bordisms and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 17
EP  - 21
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_9_a3/
LA  - ru
ID  - IVM_2003_9_a3
ER  - 
%0 Journal Article
%A I. Yu. Zolotarev
%T The degree of equivariant mappings with a value in classes of equivariant bordisms and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 17-21
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_9_a3/
%G ru
%F IVM_2003_9_a3
I. Yu. Zolotarev. The degree of equivariant mappings with a value in classes of equivariant bordisms and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 17-21. http://geodesic.mathdoc.fr/item/IVM_2003_9_a3/

[1] Borisovich Yu. G., Zolotarev I. Yu., “K obobschennoi teorii stepeni ekvivariantnykh otobrazhenii”, Tr. matem. f-ta. Novaya ser. 3, Voronezh, 1998, 4–8 | Zbl

[2] Zolotarev I. Yu., “K obobschennoi teorii stepeni otobrazhenii ekvivariantnykh otnositelno deistviya kompaktnoi gruppy Li $G=S^1$”, Sb. st. aspirantov i studentov matem. f-ta, Voronezh, 1999, 51–54

[3] Borisovich Yu. G., Zolotarev I. Yu., “K obobschennoi teorii $G$-stepeni dlya ekvivariantnykh otobrazhenii mnogoobrazii”, Tr. matem. f-ta. Novaya ser. 4, Voronezh, 1999, 12–17

[4] Borisovich Yu. G., Zolotarev I. Yu., Portnaya T. V., “O nekotorykh obobscheniyakh topologicheskikh kharakteristik L. Kronekera, M. A. Krasnoselskogo, Kh. Khopfa”, Izv. RAEN. Ser. MMIU, 4, no. 2, Samara, 2000, 82–96

[5] Kravtsevich V., Khuasing S., “Analiticheskoe opredelenie ekvivariantnoi stepeni”, Izv. vuzov. Matematika, 1996, no. 6, 37–53 | MR

[6] Borisovich Yu. G., Zolotarev I. Yu., “Generalized degree of equivariant maps”, Intern. Conference on Different. and Funct. Different. Equat., Abstracts MAI, Steklov Institute, MMS, Weierstrass Institute (Moscow, Russia, August 11–17, 2002)

[7] Borisovich Yu. G., Zolotarev I. Yu., Portnaya T. B., “Globalnyi analiz i topologicheskie kharakteristiki nelineinykh otobrazhenii”, Intern. Conference “Differential Equations and Related Topics” dedicated to the Centenary Anniversary of Ivan G. Petrovskii, XX Joint Session of Petrovskii Seminar and Moscow Math. Soc., Book of Abstracts (Moscow, May 22–27, 2001), Moscow Univ. Press, 2001, 70–72

[8] Bredon G. E., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980, 440 pp. | MR | Zbl

[9] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969, 339 pp.

[10] Pontryagin L. S., Gladkie mnogoobraziya i ikh primenenie v teorii gomotopii, Nauka, M., 1976, 176 pp. | MR | Zbl