Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_9_a11, author = {N. V. Chiganova}, title = {The eigenvalue problem for an equation of mixed type with two lines of degeneracy}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--73}, publisher = {mathdoc}, number = {9}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_9_a11/} }
TY - JOUR AU - N. V. Chiganova TI - The eigenvalue problem for an equation of mixed type with two lines of degeneracy JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 67 EP - 73 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_9_a11/ LA - ru ID - IVM_2003_9_a11 ER -
N. V. Chiganova. The eigenvalue problem for an equation of mixed type with two lines of degeneracy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2003), pp. 67-73. http://geodesic.mathdoc.fr/item/IVM_2003_9_a11/
[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973, 605 pp. | MR
[2] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR
[3] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, In. lit., M., 1961, 208 pp. | MR
[4] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981, 368 pp. | MR | Zbl
[5] Moiseev E. I., “Reshenie zadachi Trikomi v spetsialnykh oblastyakh”, Differents. uravneniya, 26:1 (1990), 93–103 | MR | Zbl
[6] Moiseev E. I., “O nekotorykh kraevykh zadachakh dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 28:1 (1992), 110–121 | MR | Zbl
[7] Din Sya Si, “Differentsialnye uravneniya smeshannnogo tipa”, Shusyue Syuebao, Acta Math. Sinica, 5:2 (1955), 193–204
[8] Sabitov K. B., Karamova A. A., “Spektralnye svoistva reshenii zadachi Trikomi dlya uravneniya smeshannogo tipa s dvumya liniyami izmeneniya tipa i ikh primeneniya”, Izv. RAN. Ser. matem., 2001, no. 4, 133–150 | MR | Zbl
[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 3, Nauka, M., 1973, 294 pp.
[10] Vatson G. N., Teoriya besselevykh funktsii, T. 1, In. lit., M., 1949, 799 pp.