On analogues of Borel's theorem for spaces of ultra differentiable functions of normal type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_8_a7,
     author = {D. A. Abanina},
     title = {On analogues of {Borel's} theorem for spaces of ultra differentiable functions of normal type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--66},
     publisher = {mathdoc},
     number = {8},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_8_a7/}
}
TY  - JOUR
AU  - D. A. Abanina
TI  - On analogues of Borel's theorem for spaces of ultra differentiable functions of normal type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 63
EP  - 66
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_8_a7/
LA  - ru
ID  - IVM_2003_8_a7
ER  - 
%0 Journal Article
%A D. A. Abanina
%T On analogues of Borel's theorem for spaces of ultra differentiable functions of normal type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 63-66
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_8_a7/
%G ru
%F IVM_2003_8_a7
D. A. Abanina. On analogues of Borel's theorem for spaces of ultra differentiable functions of normal type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 63-66. http://geodesic.mathdoc.fr/item/IVM_2003_8_a7/

[1] Borel E., “Sur quelques points de la théorie des fonctions”, Ann. Sci. Ec. Norm. Sup., Ser. 3$^{\mathrm d}$, 12 (1985), 9–55 | MR

[2] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971, 232 pp.

[3] Carleson L., “On universal moment problems”, Math. Scand., 9 (1961), 197–206 | MR | Zbl

[4] Mityagin B. S., “O beskonechno differentsiruemoi funktsii s zadannymi znacheniyami proizvodnykh v tochke”, DAN SSSR, 138:2 (1961), 289–292 | Zbl

[5] Dzhanashiya G. A., “O zadache Karlemana dlya klassa funktsii Zhevre”, DAN SSSR, 145:2 (1962), 259–262

[6] Ehrenpreis L., Fourire analysis in several complex variables, Wiley-Interscience Publ., New York, 1970, 506 pp. | MR | Zbl

[7] Komatsu H., “Ultradistributions. II: The kernel theorem and ultradistributions with support in a submanifold”, J. Fac. Sci. Univ. Tokyo. Sec. IA, 24 (1977), 607–628 | MR | Zbl

[8] Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26 (1988), 265–287 | DOI | MR | Zbl

[9] Petzsche H.-J., “On E. Borel's theorem”, Math. Ann., 282 (1988), 292–313 | DOI | MR

[10] Bonet J., Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Roumieu type”, Proc. R. Ir. Acad., 89A (1989), 53–66 | MR

[11] Korobeinik Yu. F., “Ob analiticheskikh resheniyakh problemy Borelya”, Matem. zametki, 67 (2000), 525–538 | MR

[12] Abanin A. V., Tischenko E. S., “Prostranstva ultradifferentsiruemykh funktsii i obobschenie teoremy Peli-Vinera-Shvartsa”, Izv. vuzov. Sev.-Kav. region. Estestv. nauki, 1997, no. 2, 5–8 | MR | Zbl