Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_8_a2, author = {M. V. Gorelova and E. V. Chizhonkov}, title = {On the solution of saddle problems by methods with model saddle operators on the upper layer}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {19--27}, publisher = {mathdoc}, number = {8}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_8_a2/} }
TY - JOUR AU - M. V. Gorelova AU - E. V. Chizhonkov TI - On the solution of saddle problems by methods with model saddle operators on the upper layer JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 19 EP - 27 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_8_a2/ LA - ru ID - IVM_2003_8_a2 ER -
%0 Journal Article %A M. V. Gorelova %A E. V. Chizhonkov %T On the solution of saddle problems by methods with model saddle operators on the upper layer %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 19-27 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_8_a2/ %G ru %F IVM_2003_8_a2
M. V. Gorelova; E. V. Chizhonkov. On the solution of saddle problems by methods with model saddle operators on the upper layer. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2003), pp. 19-27. http://geodesic.mathdoc.fr/item/IVM_2003_8_a2/
[1] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR
[2] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991, 350 pp. | MR | Zbl
[3] Vasilevskii Yu. V., “Metody resheniya kraevykh zadach s ispolzovaniem nestykuyuschikhsya setok”, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, Trudy Matematicheskogo tsentra im. N. I. Lobachevskogo, 2, UNIPRESS, Kazan, 1999, 94–121 | MR
[4] Dyakonov E. G., “O nekotorykh klassakh sedlovykh gradientnykh metodov”, Vychisl. protsessy i sistemy, 5 (1987), 101–115 | MR
[5] Braess D., Sarazin R., “An efficient smoother for the Stokes problem”, Appl. Numer. Math., 23 (1997), 3–19 | DOI | MR | Zbl
[6] Bank R. E., Welfert B. D., Yserentant H., “A class of iterative methods for solving saddle point problems”, Numer. Math., 56 (1990), 645–666 | DOI | MR | Zbl
[7] Vassilevski P. S., Lazarov R. D., “Preconditioning mixed finite element saddle-point elliptic problems”, Numer. Lin. Alg. with Appl., 1 (1994), 1–20 | DOI | MR
[8] Zulehner W., Analysis of iterative methods for saddle point problems a unified approach, Report No 538, Department Numer. Anal. Johannes Kepler Univ., Linz, Austria, February 1998, 33 pp.
[9] Chizhonkov E. V., “O skhodimosti algoritma Errou-Gurvitsa dlya algebraicheskoi sistemy tipa Stoksa”, Dokl. RAN, 361:5 (1998), 600–602 | MR | Zbl
[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR
[11] Lebedev V. I., Finogenov S. A., “O poryadke vybora iteratsionnykh parametrov v chebyshevskikh tsiklicheskikh iteratsionnykh metodakh”, Zhurn. vychisl. matem. i matem. fiz., 11:2 (1971), 425–438 | MR | Zbl
[12] Lebedev V. I., “Ob iteratsionnykh metodakh resheniya operatornykh uravnenii so spektrom, lezhaschim na neskolkikh otrezkakh”, Zhurn. vychisl. matem. i matem. fiz., 9:6 (1969), 1247–1254
[13] Wathen A., Fischer B., Silvester D., “The convergence of iterative solution methods for symmetric and indefinite linear systems”, Num. Anal. (1997), Pitman Res. Notes Math. Ser., 380, eds. Griffits D., Higman D., Watson G., Addison Wesley; Longman, 1998, 230–243 | MR