Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_7_a1, author = {V. A. Antonov and N. N. Amineva}, title = {On groups with relatively large centralizers}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--17}, publisher = {mathdoc}, number = {7}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_7_a1/} }
V. A. Antonov; N. N. Amineva. On groups with relatively large centralizers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2003), pp. 8-17. http://geodesic.mathdoc.fr/item/IVM_2003_7_a1/
[1] Gilotti A. L., Tiberio U., “On the Fitting length of $NC$-groups”, Geom. dedic., 40:1 (1991), 217–224 | DOI | MR
[2] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami”, Matem. zametki, 41:3 (1987), 296–302 | MR | Zbl
[3] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami, 2”, Izv. vuzov. Matematika, 1989, no. 1, 12–14 | MR | Zbl
[4] Smith S. D., Tyrer A. P., “On finite groups with a certain Sylow normalizer. 1; 2”, J. Algebra, 26:2 (1973), 343–367 | DOI | MR
[5] Kholl M., Teoriya grupp, In. lit., M., 1962, 468 pp.
[6] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl
[7] Gorenstein D., Walter J. H., “The characterization of finite groups with dihedral Sylow 2-subgroups, 1”, J. Algebra, 2:1 (1965), 85–151 | DOI | MR | Zbl
[8] Gorenstein D., Walter J. H., “The characterization of finite groups with dihedral Sylow 2-subgroups, 2”, J. Algebra, 2:2 (1965), 218–270 | DOI | MR | Zbl
[9] Gorenstein D., Walter J. H., “The characterization of finite groups with dihedral Sylow 2-subgroups, 3”, J. Algebra, 2:3 (1965), 354–393 ; Corrections, 11:2 (1969), 315–318 | DOI | MR | Zbl | DOI | MR
[10] Antonov V. A., “Gruppy tipa Gashyutsa i blizkie k nim gruppy”, Matem. zametki, 27:6 (1980), 839–857 | MR | Zbl
[11] Suzuki M., Group theory, V. 2, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1986, 621 pp. | MR
[12] Carter R. G., Simple groups of Lie type, John Wiley Sons, London–New York–Sydney–Toronto, 1972, 331 pp. | MR | Zbl