Spectral properties of a boundary value problem with a normal derivative in the boundary condition for equations of mixed type and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2003), pp. 64-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_6_a7,
     author = {K. B. Sabitov and S. L. Khasanova},
     title = {Spectral properties of a boundary value problem with a normal derivative in the boundary condition for equations of mixed type and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--76},
     publisher = {mathdoc},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_6_a7/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - S. L. Khasanova
TI  - Spectral properties of a boundary value problem with a normal derivative in the boundary condition for equations of mixed type and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 64
EP  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_6_a7/
LA  - ru
ID  - IVM_2003_6_a7
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A S. L. Khasanova
%T Spectral properties of a boundary value problem with a normal derivative in the boundary condition for equations of mixed type and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 64-76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_6_a7/
%G ru
%F IVM_2003_6_a7
K. B. Sabitov; S. L. Khasanova. Spectral properties of a boundary value problem with a normal derivative in the boundary condition for equations of mixed type and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2003), pp. 64-76. http://geodesic.mathdoc.fr/item/IVM_2003_6_a7/

[1] Frankl F. I., “K teorii sopel Lavalya”, Izv. AN SSSR. Ser. Matem., 9:5 (1945), 387–422 | MR | Zbl

[2] Frankl F. I., “K teorii uravneniya $y\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0$”, Izv. AN SSSR. Ser. Matem., 10:2 (1946), 135–166 | MR | Zbl

[3] Bitsadze A. V., “O nekotorykh zadachakh smeshannogo tipa”, DAN SSSR, 70:4 (1950), 561–564 | Zbl

[4] Vostrova L. E., “Smeshannaya kraevaya zadacha dlya uravneniya $u_{xx}+\mathrm{sgn}\, y\cdot u_{yy}-u=0$”, Uchen. zap. Kuib. gos. ped. in-ta, 1958, no. 21, 219–267

[5] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970, 296 pp. | MR

[6] Moiseev E. I., “Reshenie zadachi Trikomi v spetsialnykh oblastyakh”, Differents. uravneniya, 26:1 (1992), 93–103 | MR

[7] Sabitov K. B., Karamova A. A., “Spektralnye svoistva reshenii zadachi Trikomi dlya uravnenii smeshannogo tipa s dvumya liniyami izmeneniya tipa i ikh primeneniya”, Izv. RAN. Ser. Matem., 65:4 (2001), 133–150 | MR | Zbl

[8] Sabitov K. B., Kuchkarova A. N., “Spektralnye svoistva resheniya zadachi Gellerstedta dlya uravnenii smeshannogo tipa i ikh primenenie”, Sib. matem. zhurn., 42:5 (2001), 1147–1161 | MR | Zbl

[9] Sabitov K. B., “Postroenie v yavnom vide reshenii zadach Darbu dlya telegrafnogo uravneniya i ikh primenenie pri obraschenii integralnykh uravnenii, I”, Differents. uravneniya, 26:6 (1990), 1023–1032 | MR

[10] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983, 750 pp. | MR | Zbl

[11] Vatson G. N., Teoriya besselevykh funktsii, T. I, In. lit., M., 1949, 799 pp.

[12] Sabitov K. B., Tikhomirov V. V., “O postroenii sobstvennykh znachenii i funktsii odnoi gazodinamicheskoi zadachi Franklya”, Matem. modelir., 2:10 (1990), 100–109 | MR | Zbl

[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1965, 294 pp.

[14] Moiseev E. I., “O bazisnosti odnoi sistemy sinusov”, Differents. uravneniya, 23:1 (1987), 177–179 | MR | Zbl

[15] Akhiezer N. I., Lektsii po teorii approksimatsii, M., 1965, 407 pp. | MR

[16] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. II. Transtsendentnye funktsii, Fizmatgiz, M., 1963, 515 pp.

[17] Ilin V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. II, Nauka, M., 1998, 448 pp.