Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_6_a3, author = {D. V. Vylegzhanin}, title = {Generalized {Hermitian} geometry on a manifold with $f$-structures}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {28--36}, publisher = {mathdoc}, number = {6}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_6_a3/} }
D. V. Vylegzhanin. Generalized Hermitian geometry on a manifold with $f$-structures. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2003), pp. 28-36. http://geodesic.mathdoc.fr/item/IVM_2003_6_a3/
[1] Kirichenko V. F., “Kasatelnoe rassloenie s tochki zreniya obobschennoi ermitovoi geometrii”, Izv. vuzov. Matematika, 1984, no. 7, 50–59 | MR
[2] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhniki. Probl. geometrii, 18, VINITI, 1986, 25–71 | MR
[3] Yano K., “On a structure defined by a tensor field $f$ of type $(1, 1)$ satisfying $f^3+f=0$”, Tensor, 14 (1963), 99–109 | MR | Zbl
[4] Yano K., Kon M., $CR$-podmnogoobraziya v kelerovom i sasakievom mnogoobraziyakh, Nauka, M., 1990, 192 pp. | MR
[5] Stong R. E., “The rank of an $f$-structure”, Kodai Math. Sem. Rep., 29 (1977), 207–209 | DOI | MR | Zbl
[6] Vylegzhanin D. V., “Estestvennaya konstruktsiya obobschennoi pochti ermitovoi struktury”, Vestn. Vitebsk. un-ta, 2001, no. 2, 114–119
[7] Stepanov N. A., “Osnovnye fakty teorii $\varphi$-prostranstv”, Izv. vuzov. Matematika, 1967, no. 3, 88–95 | Zbl
[8] Balaschenko V. V., Stepanov N. A., “Kanonicheskie affinornye struktury klassicheskogo tipa na regulyarnykh $\Phi$-prostranstvakh”, Matem. sb., 186:11 (1995), 3–34 | MR
[9] Balashchenko V. V., Riemannian geometry of canonical structures on regular $\Phi$-spaces, Preprint No 174, Fakultät für Mathematik der Ruhr-Universität Bochum, 1994, 19 pp.
[10] Balaschenko V. V., “Odnorodnye ermitovy $f$-mnogoobraziya”, UMN, 56:3 (2001), 159–160 | MR | Zbl