Minimal $k$-extensions of precomplete graphs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2003), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_6_a0,
     author = {M. B. Abrosimov},
     title = {Minimal $k$-extensions of precomplete graphs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_6_a0/}
}
TY  - JOUR
AU  - M. B. Abrosimov
TI  - Minimal $k$-extensions of precomplete graphs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 3
EP  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_6_a0/
LA  - ru
ID  - IVM_2003_6_a0
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%T Minimal $k$-extensions of precomplete graphs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 3-11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_6_a0/
%G ru
%F IVM_2003_6_a0
M. B. Abrosimov. Minimal $k$-extensions of precomplete graphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2003), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2003_6_a0/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl

[2] Karavai M. F., “Primenenie teorii simmetrii k analizu i sintezu otkazoustoichivykh sistem”, Avtomatika i telemekhanika, 1996, no. 6, 159–173 | MR

[3] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., 1976, no. 9, 875–884 | DOI | MR | Zbl

[4] Lovas L., Plammer M., Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Mir, M., 1998, 654 pp.