On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2003), pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_5_a9,
     author = {G. G. Islamov},
     title = {On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--81},
     publisher = {mathdoc},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 78
EP  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/
LA  - ru
ID  - IVM_2003_5_a9
ER  - 
%0 Journal Article
%A G. G. Islamov
%T On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 78-81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/
%G ru
%F IVM_2003_5_a9
G. G. Islamov. On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2003), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/

[1] Islamov G. G., “Ekstremalnye vozmuscheniya zamknutykh operatorov”, Izv. vuzov. Matematika, 1989, no. 1, 35–41 | MR

[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR

[3] Islamov G. G., “Ob upravlenii spektrom dinamicheskoi sistemy”, Differents. uravneniya, 1987, no. 8, 1299–1302 | MR

[4] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 318 pp. | MR | Zbl