Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_5_a9, author = {G. G. Islamov}, title = {On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {78--81}, publisher = {mathdoc}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/} }
TY - JOUR AU - G. G. Islamov TI - On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 78 EP - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/ LA - ru ID - IVM_2003_5_a9 ER -
%0 Journal Article %A G. G. Islamov %T On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 78-81 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/ %G ru %F IVM_2003_5_a9
G. G. Islamov. On the minimum number of orthogonal constraints that eliminate natural oscillations with specific frequencies. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2003), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2003_5_a9/
[1] Islamov G. G., “Ekstremalnye vozmuscheniya zamknutykh operatorov”, Izv. vuzov. Matematika, 1989, no. 1, 35–41 | MR
[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR
[3] Islamov G. G., “Ob upravlenii spektrom dinamicheskoi sistemy”, Differents. uravneniya, 1987, no. 8, 1299–1302 | MR
[4] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 318 pp. | MR | Zbl