Determination of safe and unsafe boundaries of the stability domain of the equilibrium state of a second-order equation with delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_4_a6,
     author = {L. Z. Fishman},
     title = {Determination of safe and unsafe boundaries of the stability domain of the equilibrium state of a second-order equation with delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--66},
     publisher = {mathdoc},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_4_a6/}
}
TY  - JOUR
AU  - L. Z. Fishman
TI  - Determination of safe and unsafe boundaries of the stability domain of the equilibrium state of a second-order equation with delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 61
EP  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_4_a6/
LA  - ru
ID  - IVM_2003_4_a6
ER  - 
%0 Journal Article
%A L. Z. Fishman
%T Determination of safe and unsafe boundaries of the stability domain of the equilibrium state of a second-order equation with delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 61-66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_4_a6/
%G ru
%F IVM_2003_4_a6
L. Z. Fishman. Determination of safe and unsafe boundaries of the stability domain of the equilibrium state of a second-order equation with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2003_4_a6/

[1] Myshkis A. D., Shimanov S. N., Elsgolts L. E., “Ustoichivost i kolebaniya sistem s zapazdyvaniem”, Tr. Mezhd. simpoziuma po nelineinym kolebaniyam, T. 2, Kiev, 1963, 241–267

[2] Shimanov S. N., “Kriticheskii sluchai pary chisto mnimykh kornei dlya sistem s posledeistviem”, Sib. matem. zhurn., 2:3 (1961), 467–480 | Zbl

[3] Osipov Yu. S., “O printsipe svedéniya v kriticheskikh sluchayakh ustoichivosti dvizheniya sistem s zapazdyvaniem vremeni”, PMM, 29:5 (1965), 810–820 | MR | Zbl

[4] Fishman L. Z., “O rozhdenii periodicheskogo resheniya u sistem differentsialnykh uravnenii s zapazdyvaniem”, Izv. vuzov. Matematika, 1976, no. 12, 96–107 | Zbl

[5] Kolesov Yu. S., Shvitra D. N., Avtokolebaniya v sistemakh s zapazdyvaniem, Izd-vo “Mokslas”, Vilnyus, 1979, 146 pp. | MR

[6] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR

[7] Kheil Dzh. K., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[8] Fishman L. Z., “Kriterii opredeleniya opasnykh i bezopasnykh granits oblasti ustoichivosti sistem s zapazdyvaniem”, Avtomatika i telemekhanika, 1987, no. 10, 185–187 | MR | Zbl

[9] Fishman L. Z., “Kriterii opasnykh i bezopasnykh granits oblasti ustoichivosti sistem s zapazdyvaniem v sluchae nulevogo kornya”, Differents. uravneniya, 1990, no. 10, 1830–1832 | MR | Zbl

[10] Fishman L. Z., “O rozhdenii periodicheskogo resheniya u sistem differentsialnykh uravnenii s zapazdyvaniem”, Dinamika sistem, Dinamicheskie sistemy i protsessy upravleniya, 6, Gorkii, 1975, 65–72 | MR

[11] Bautin N. N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti, Nauka, M., 1984, 176 pp. | MR | Zbl

[12] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR

[13] Neimark Yu. I., Dinamicheskie sistemy i upravlyaemye protsessy, Nauka, M., 1978, 336 pp. | MR