Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 27-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_4_a3,
     author = {Yu. F. Dolgii and V. S. Tarasyan},
     title = {Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--39},
     publisher = {mathdoc},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - V. S. Tarasyan
TI  - Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 27
EP  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/
LA  - ru
ID  - IVM_2003_4_a3
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A V. S. Tarasyan
%T Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 27-39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/
%G ru
%F IVM_2003_4_a3
Yu. F. Dolgii; V. S. Tarasyan. Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 27-39. http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/

[1] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[3] Borisovich Yu. G., Turbabin A. S., “O zadache Koshi dlya lineinykh neodnorodnykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, DAN SSSR, 185:4 (1969), 741–744 | Zbl

[4] Dolgii Yu. F., Ustoichivost periodicheskikh differentsialno-raznostnykh uravnenii, UrGU, Sverdlovsk, 1996, 84 pp.

[5] Dolgii Yu. F., Tarasyan V. S., “Konechnomernye operatory monodromii dlya periodicheskikh sistem differentsialnykh uravnenii s posledeistviem”, Izv. Ural. un-ta. Matematika i mekhanika, 2000, no. 3, 67–83 | MR

[6] Cooke K. L., Wiener J., “Retarded differential equations with piecewise constant delays”, J. Math. Anal. and Appl., 99 (1984), 265–297 | DOI | MR | Zbl

[7] Tsypkin Ya. Z., Teoriya impulsnykh sistem, Fizmatgiz, M., 1958, 724 pp. | MR

[8] Liu Pingzhou, Gopalsamy K., “Global stability and chaos in a population model with piecewise constant arguments”, Appl. Math. and Comput., 101:1 (1999), 63–88 | DOI | MR | Zbl

[9] Alonso Ana I., Hong Jalin, Rojo Jesus, “A class of ergodic solutions of differential equations with piecewise constant arguments”, Dyn. Syst. and Appl., 7:4 (1998), 561–574 | MR

[10] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968, 448 pp. | MR