Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_4_a3, author = {Yu. F. Dolgii and V. S. Tarasyan}, title = {Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--39}, publisher = {mathdoc}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/} }
TY - JOUR AU - Yu. F. Dolgii AU - V. S. Tarasyan TI - Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 27 EP - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/ LA - ru ID - IVM_2003_4_a3 ER -
%0 Journal Article %A Yu. F. Dolgii %A V. S. Tarasyan %T Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 27-39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/ %G ru %F IVM_2003_4_a3
Yu. F. Dolgii; V. S. Tarasyan. Conditions for a monodromy operator being finite-dimensional for periodic systems with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 27-39. http://geodesic.mathdoc.fr/item/IVM_2003_4_a3/
[1] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR
[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR
[3] Borisovich Yu. G., Turbabin A. S., “O zadache Koshi dlya lineinykh neodnorodnykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, DAN SSSR, 185:4 (1969), 741–744 | Zbl
[4] Dolgii Yu. F., Ustoichivost periodicheskikh differentsialno-raznostnykh uravnenii, UrGU, Sverdlovsk, 1996, 84 pp.
[5] Dolgii Yu. F., Tarasyan V. S., “Konechnomernye operatory monodromii dlya periodicheskikh sistem differentsialnykh uravnenii s posledeistviem”, Izv. Ural. un-ta. Matematika i mekhanika, 2000, no. 3, 67–83 | MR
[6] Cooke K. L., Wiener J., “Retarded differential equations with piecewise constant delays”, J. Math. Anal. and Appl., 99 (1984), 265–297 | DOI | MR | Zbl
[7] Tsypkin Ya. Z., Teoriya impulsnykh sistem, Fizmatgiz, M., 1958, 724 pp. | MR
[8] Liu Pingzhou, Gopalsamy K., “Global stability and chaos in a population model with piecewise constant arguments”, Appl. Math. and Comput., 101:1 (1999), 63–88 | DOI | MR | Zbl
[9] Alonso Ana I., Hong Jalin, Rojo Jesus, “A class of ergodic solutions of differential equations with piecewise constant arguments”, Dyn. Syst. and Appl., 7:4 (1998), 561–574 | MR
[10] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968, 448 pp. | MR