Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_4_a1, author = {V. V. Vlasov and V. Zh. Sakbaev}, title = {Correct solvability of differential equations with aftereffect in the scale of {Sobolev} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--16}, publisher = {mathdoc}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_4_a1/} }
TY - JOUR AU - V. V. Vlasov AU - V. Zh. Sakbaev TI - Correct solvability of differential equations with aftereffect in the scale of Sobolev spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 8 EP - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_4_a1/ LA - ru ID - IVM_2003_4_a1 ER -
%0 Journal Article %A V. V. Vlasov %A V. Zh. Sakbaev %T Correct solvability of differential equations with aftereffect in the scale of Sobolev spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 8-16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_4_a1/ %G ru %F IVM_2003_4_a1
V. V. Vlasov; V. Zh. Sakbaev. Correct solvability of differential equations with aftereffect in the scale of Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2003), pp. 8-16. http://geodesic.mathdoc.fr/item/IVM_2003_4_a1/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl
[2] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl
[3] Di Blasio G., Kunish K., Sinestrary E., “$L^2$-regularity for parabolic integrodifferential equations with delay in the highest order derivatives”, J. Math. Anal. Appl., 102 (1984), 38–57 | DOI | MR | Zbl
[4] Sinestrari E., “On the abstract Cauchy problem of parabolic type in spaces of continuous function”, J. Math. Anal. and Appl., 107 (1985), 16–66 | DOI | MR | Zbl
[5] Vlasov V. V., “Korrektnaya razreshimost odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1996, no. 1, 22–35 | MR | Zbl
[6] Vlasov V. V., “O razreshimosti i svoistvakh reshenii funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, Matem. sb., 186:8 (1995), 67–92 | MR | Zbl
[7] Vlasov V. V., “Ob odnom klasse funktsionalno-differentsialnykh uravnenii s zapazdyvayuschim argumentom v gilbertovom prostranstve”, Matem. zametki, 62:5 (1997), 782–786 | MR | Zbl
[8] Staffans O., “Some well-posed functional equations which generate semigroups”, J. Diff. Equations, 58:2 (1985), 157–191 | DOI | MR | Zbl
[9] Datko R., “Representation of solutions and stability of linear differential-difference equations in a Banach space”, J. Diff. Equations, 29:1 (1978), 105–166 | DOI | MR
[10] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Diff. and Integral Equations, 4:6 (1991), 1325–1351 | MR | Zbl
[11] Kunish K., Kappel F., “Invariance result for delay and Volterra equations in fractional order Sobolev spaces”, Trans. Amer. Math. Soc., 304:1 (1987), 1–51 | DOI | MR
[12] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Tr. MIAN, 227, 1999, 109–121 | MR | Zbl
[13] Vlasov V. V., Sakbaev V. Zh., “O korrektnoi razreshimosti odnogo klassa nekotorykh funktsionalno-differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Nekotorye problemy fundamentalnoi i prikladnoi matematiki, Mezhduved. sb., M., 1998, 38–51
[14] Vlasov V. V., Sakbaev V. Zh., “O korrektnoi razreshimosti v shkale prostranstv Soboleva nekotorykh differentsialno-raznostnykh uravnenii”, Differents. uravneniya, 37:9 (2001), 1194–1202 | MR | Zbl
[15] Vlasov V. V., Sakbaev V. Zh., “O korrektnoi razreshimosti nekotorykh differentsialno-raznostnykh uravnenii v prostranstvakh Soboleva”, Matem. zametki, 68:6 (2000), 939–942 | MR | Zbl
[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[17] Wu J., Theory and applications of partial functional differential equations, Appl. Mathem. Sci., 119, Springer-Verlag, 1996, 429 pp. | MR