A relation between semigroups with a singularity and integrated semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2003), pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_3_a8,
     author = {S. P. Toropova},
     title = {A relation between semigroups with a singularity and integrated semigroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--77},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_3_a8/}
}
TY  - JOUR
AU  - S. P. Toropova
TI  - A relation between semigroups with a singularity and integrated semigroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 69
EP  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_3_a8/
LA  - ru
ID  - IVM_2003_3_a8
ER  - 
%0 Journal Article
%A S. P. Toropova
%T A relation between semigroups with a singularity and integrated semigroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 69-77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_3_a8/
%G ru
%F IVM_2003_3_a8
S. P. Toropova. A relation between semigroups with a singularity and integrated semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2003), pp. 69-77. http://geodesic.mathdoc.fr/item/IVM_2003_3_a8/

[1] Melnikova I. V., Alshanskii M. A., “Korrektnost zadachi Koshi v banakhovom prostranstve: regulyarnyi i vyrozhdennyi sluchai”, Analiz-9, Itogi nauki i tekhn. Ser. sovr. matem. i ee pril. Tem. obzory, no. 27, VINITI, 1995, 5–64

[2] Neubrander F., “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacific J. Math., 135 (1988), 111–155 | MR | Zbl

[3] Tanaka N., “On the exponentially bounded $C$-semigroups”, Tokyo J. Math., 10:1 (1987), 107–117 | MR | Zbl

[4] Okazawa N., “A generation theorem for semigroups of growth order $\alpha$”, Tohoku Math. J., 26 (1974), 39–51 | DOI | MR | Zbl

[5] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, In. lit., M., 1962, 829 pp. | MR

[6] Miyadera I., Tanaka N., “Exponentially $C$-semigroups and generation of semigroups”, J. Math. Anal. and Appl., 1989, no. 2, 358–365 | DOI | MR

[7] Tanaka N., Miyadera I., “Exponentially bounded $C$-semigroups and integrated semigroups”, Tokyo J. Math., 12 (1989), 101–115 | MR

[8] Davies E. B., Pang M. M., “The Cauchy problem and a generalization of the Hille-Yosida theorem”, Proc. London Math. Soc., 55 (1987), 181–208 | DOI | MR | Zbl

[9] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[10] Melnikova I., Zheng Q., Zhang J., “Semigroup regularization of weakly ill-posed Cauchy problems”, J. Inverse Ill–posed probl., 6 (2002) | MR

[11] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983, 279 pp. | MR | Zbl

[12] Boyadzhiev K., Delaubenfels R., “Boundary values of holomorphic semigroups”, Proc. Amer. Math. Soc., 118 (1993), 113–118 | DOI | MR | Zbl