On singular integral convolution operators of weak type $(\varphi,\varphi)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2003), pp. 43-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_3_a5,
     author = {B. I. Peleshenko},
     title = {On singular integral convolution operators of weak type $(\varphi,\varphi)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--48},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_3_a5/}
}
TY  - JOUR
AU  - B. I. Peleshenko
TI  - On singular integral convolution operators of weak type $(\varphi,\varphi)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 43
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_3_a5/
LA  - ru
ID  - IVM_2003_3_a5
ER  - 
%0 Journal Article
%A B. I. Peleshenko
%T On singular integral convolution operators of weak type $(\varphi,\varphi)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 43-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_3_a5/
%G ru
%F IVM_2003_3_a5
B. I. Peleshenko. On singular integral convolution operators of weak type $(\varphi,\varphi)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2003), pp. 43-48. http://geodesic.mathdoc.fr/item/IVM_2003_3_a5/

[1] Jurkat W. B., Sampson G., “The $L^p$ mapping problem for well-behaved convolutions”, Stud. math., 65:3 (1979), 227–238 | MR | Zbl

[2] Riviere N. M., “Singular integrals and multiplier operators”, Ark. matem., 9:2 (1971), 243–278 | DOI | MR | Zbl

[3] Peleshenko B. I., “O singulyarnykh integralnykh operatorakh svertki slabogo tipa”, Tr. Matem. in-ta im. V. A. Steklova, 180, 1987, 174–175

[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[5] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, In. lit., M., 1962, 70 pp.

[6] Spanne S., “Sur interpolasion entre les espaces $L_K^{p,\phi}$”, Ann. Sc. Scuola Norm. Sup. Pisa, 20 (1966), 625–648 | MR | Zbl

[7] Stampacchia G., “The spaces $L^{(p,\lambda)}$, $N^{(p,\lambda)}$ and interpolation”, Ann. Sc. Norm. Sup. Pisa, 19 (1965), 443–462 | MR | Zbl

[8] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[9] Benett C., Rudnick K., “On Lorentz–Zygmund spaces”, Rozpr. Matem., 175 (1980), 72 pp. | MR