Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_2_a5, author = {T. P. Sizhuk}, title = {The limit of close-to-convexity at a point for univalent functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--58}, publisher = {mathdoc}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_2_a5/} }
T. P. Sizhuk. The limit of close-to-convexity at a point for univalent functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2003), pp. 55-58. http://geodesic.mathdoc.fr/item/IVM_2003_2_a5/
[1] Reade M. O., “The coefficients of close-to-convex functions”, Duke Math. J., 23:3 (1956), 459–462 | DOI | MR | Zbl
[2] Goodman A. W., “On close-to-convex functions of higher order”, Annal. Univ. Sci. Budapest. Sec. Math., 15 (1972), 17–30 | MR
[3] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl
[4] Maksimov Yu. D., “Ekstremalnye zadachi v nekotorykh klassakh analiticheskikh funktsii”, DAN SSSR, 100:6 (1955), 1041–1044 | MR | Zbl
[5] Krzyž J., “The radius of close-to-convexity within the family of univalent functions”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron., Phys., 10:4 (1962), 201–204 | MR | Zbl
[6] Aleksandrov I. A., Sobolev V. V., Analiticheskie funktsii kompleksnogo peremennogo, Ucheb. posobie, Vyssh. shkola, M., 1984, 192 pp. | MR | Zbl
[7] Sizhuk P. I., “Radius pochti vypuklosti poryadka $\alpha$ v klasse odnolistnykh funktsii”, Matem. zametki, 20:1 (1976), 105–112 | MR | Zbl
[8] Aleksandrov I. A., “O granitsakh vypuklosti i zvezdoobraznosti dlya funktsii, odnolistnykh i regulyarnykh v kruge”, DAN SSSR, 116:6 (1957), 903–905 | MR | Zbl