Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_2_a1, author = {T. I. Gatal'skaya and E. I. Zverovich}, title = {Explicit solution of a singular integral equation with the {Weierstrass} zeta function as a kernel}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--23}, publisher = {mathdoc}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_2_a1/} }
TY - JOUR AU - T. I. Gatal'skaya AU - E. I. Zverovich TI - Explicit solution of a singular integral equation with the Weierstrass zeta function as a kernel JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 15 EP - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_2_a1/ LA - ru ID - IVM_2003_2_a1 ER -
%0 Journal Article %A T. I. Gatal'skaya %A E. I. Zverovich %T Explicit solution of a singular integral equation with the Weierstrass zeta function as a kernel %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 15-23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_2_a1/ %G ru %F IVM_2003_2_a1
T. I. Gatal'skaya; E. I. Zverovich. Explicit solution of a singular integral equation with the Weierstrass zeta function as a kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2003), pp. 15-23. http://geodesic.mathdoc.fr/item/IVM_2003_2_a1/
[1] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970, 304 pp. | MR | Zbl
[2] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973, 426 pp. | MR
[3] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977, 303 pp.
[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[5] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[6] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983, 432 pp. | MR