Weighted estimates for the solution of the Dirichlet problem with anisotropic degeneration on part of the boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2003), pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_1_a7,
     author = {M. R. Timerbaev},
     title = {Weighted estimates for the solution of the {Dirichlet} problem with anisotropic degeneration on part of the boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--73},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_1_a7/}
}
TY  - JOUR
AU  - M. R. Timerbaev
TI  - Weighted estimates for the solution of the Dirichlet problem with anisotropic degeneration on part of the boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 60
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_1_a7/
LA  - ru
ID  - IVM_2003_1_a7
ER  - 
%0 Journal Article
%A M. R. Timerbaev
%T Weighted estimates for the solution of the Dirichlet problem with anisotropic degeneration on part of the boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 60-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_1_a7/
%G ru
%F IVM_2003_1_a7
M. R. Timerbaev. Weighted estimates for the solution of the Dirichlet problem with anisotropic degeneration on part of the boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2003), pp. 60-73. http://geodesic.mathdoc.fr/item/IVM_2003_1_a7/

[1] Lizorkin P. I., Nikolskii S. M., “Ellipticheskie uravneniya s vyrozhdeniem. Variatsionnyi metod”, DAN SSSR, 257:1 (1981), 42–45 | MR | Zbl

[2] Lizorkin P. I., Nikolskii S. M., “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva reshenii”, DAN SSSR, 257:2 (1981), 278–282 | MR | Zbl

[3] Kydyraliev S. K., Ashirbaeva A., “Gladkost reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Issled. po integro-differents. uravneniyam, no. 23, Bishkek, 1991, 137–142

[4] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 42:7 (2000), 1086–1093 | MR

[5] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989, 254 pp. | MR

[6] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, In. lit., M., 1948, 456 pp.

[7] Ionescu Tulcea A., Ionescu Tulcea C., Topics in the theory of lifting, Springer-Verlag, Berlin–N. Y., 1969, 250 pp. | Zbl

[8] Adams R. A., Sobolev spaces, Academ. press, New York–San Francisco–London, 1975, 270 pp. | MR | Zbl

[9] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[10] Smirnov V. I., Kurs vysshei matematiki, 10-e izd., Nauka, M., 1974, 672 pp. | MR

[11] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, In. lit., M., 1966, 1063 pp.

[12] Timerbaev M. R., Ob usilennykh prostranstvakh Soboleva, Kazansk. matem. o-vo, 1998, 32 pp.