The method of descent over an interval function for nonsmooth equilibrium problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2003), pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_12_a5,
     author = {I. V. Konnov and O. V. Pinyagina},
     title = {The method of descent over an interval function for nonsmooth equilibrium problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--77},
     publisher = {mathdoc},
     number = {12},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_12_a5/}
}
TY  - JOUR
AU  - I. V. Konnov
AU  - O. V. Pinyagina
TI  - The method of descent over an interval function for nonsmooth equilibrium problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 71
EP  - 77
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_12_a5/
LA  - ru
ID  - IVM_2003_12_a5
ER  - 
%0 Journal Article
%A I. V. Konnov
%A O. V. Pinyagina
%T The method of descent over an interval function for nonsmooth equilibrium problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 71-77
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_12_a5/
%G ru
%F IVM_2003_12_a5
I. V. Konnov; O. V. Pinyagina. The method of descent over an interval function for nonsmooth equilibrium problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2003), pp. 71-77. http://geodesic.mathdoc.fr/item/IVM_2003_12_a5/

[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988, 448 pp. | MR

[2] Blum E., Oettli W., “From optimization and variational inequalities to equilibrium problems”, The Mathem. Student, 63:1 (1994), 123–145 | MR | Zbl

[3] Bianchi M., Schaible S., “Generalized monotone bifunctions and equilibrium problems”, J. Optim. Theory Appl., 90:1 (1996), 31–43 | DOI | MR | Zbl

[4] Konnov I. V., Schaible S., “Duality for equilibrium problems under generalized monotonicity”, J. Optim. Theory Appl., 104:2 (2000), 395–408 | DOI | MR | Zbl

[5] Patriksson M., “Merit functions and descent algorithms for a class of variational inequality problems”, Optimization, 41:1 (1997), 37–55 | DOI | MR | Zbl

[6] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[7] Zangvill U., Nelineinoe programmirovanie. Edinyi podkhod, Sovetskoe radio, M., 1973, 312 pp.