@article{IVM_2003_11_a7,
author = {S. E. Stepanov},
title = {On the holomorphic mapping of an almost {semi-K\"ahler} manifold},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {67--69},
year = {2003},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2003_11_a7/}
}
S. E. Stepanov. On the holomorphic mapping of an almost semi-Kähler manifold. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 67-69. http://geodesic.mathdoc.fr/item/IVM_2003_11_a7/
[1] Davidov I., Sergeev A. G., “Tvistornye prostranstva i garmonicheskie otobrazheniya”, UMN, 48:3 (1993), 3–96 | MR | Zbl
[2] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987, 312 pp. | MR | Zbl
[3] Lichnerowicz A., “Applications harmoniques et varietes Kahleriannes”, Sympos. Math. Bologna, 3 (1970), 341–402 | MR | Zbl
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 414 pp.
[5] Friedland L., Hsiung Ch.-Ch., “A certain class of almost Hermitian manifolds”, Tensor. N.S., 48 (1989), 252–263 | MR | Zbl
[6] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure Appl., 123 (1980), 35–58 | DOI | MR | Zbl
[7] Stepanov S. E., “On the global theory of some classes of mappings”, Ann. Global Anal. and Geom., 13:3 (1995), 239–249 | DOI | MR | Zbl
[8] Yano K., Ishihara S., “Harmonic and relatively affine mappings”, J. Different. Geom., 10:4 (1975), 501–509 | MR | Zbl
[9] Milnor Dzh., Teoriya Morsa, Mir, M., 1965, 184 pp. | MR