Infinitesimal ARG-deformations of surfaces under the generalized sliding condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 60-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_11_a6,
     author = {V. V. Sidoryakina},
     title = {Infinitesimal {ARG-deformations} of surfaces under the generalized sliding condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--66},
     publisher = {mathdoc},
     number = {11},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_11_a6/}
}
TY  - JOUR
AU  - V. V. Sidoryakina
TI  - Infinitesimal ARG-deformations of surfaces under the generalized sliding condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 60
EP  - 66
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_11_a6/
LA  - ru
ID  - IVM_2003_11_a6
ER  - 
%0 Journal Article
%A V. V. Sidoryakina
%T Infinitesimal ARG-deformations of surfaces under the generalized sliding condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 60-66
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_11_a6/
%G ru
%F IVM_2003_11_a6
V. V. Sidoryakina. Infinitesimal ARG-deformations of surfaces under the generalized sliding condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 60-66. http://geodesic.mathdoc.fr/item/IVM_2003_11_a6/

[1] Sidoryakina V. V., “Uravneniya beskonechno malykh $ARG$-deformatsii poverkhnostei polozhitelnoi krivizny”, Matematicheskie modeli fizicheskikh protsessov i ikh svoistva, Sb. tr. mezhdunarodn. nauchn. konf., Taganrogsk. ped. in-t, Taganrog, 2002, 132–136

[2] Fomenko V. T., “$ARG$-deformations of a hypersurface with a boundary in a Riemannian space”, Tensor, 54 (1993), 28–34 | MR | Zbl

[3] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 224 pp. | MR | Zbl

[4] Sidoryakina V. V., “Beskonechno malye $ARG$-deformatsii poverkhnostei polozhitelnoi krivizny pri vtulochnoi svyazi obobschennogo skolzheniya”, Matematicheskie modeli fizicheskikh protsessov i ikh svoistva, Sb. tr. mezhdunarodn. nauchn. konf., Taganrogsk. ped. in-t, Taganrog, 2002, 136–140

[5] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, In. lit., M., 1957, S. 10–28

[6] Petrovskii I. G., Lektsii po teorii integralnykh uravnenii, Nauka, M., 1965, 127 pp. | MR