Multipoint invariants of transformation groups, and three-webs defined by them
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_11_a10,
     author = {G. A. Tolstikhina and A. M. Shelekhov},
     title = {Multipoint invariants of transformation groups, and three-webs defined by them},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--87},
     publisher = {mathdoc},
     number = {11},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_11_a10/}
}
TY  - JOUR
AU  - G. A. Tolstikhina
AU  - A. M. Shelekhov
TI  - Multipoint invariants of transformation groups, and three-webs defined by them
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 82
EP  - 87
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_11_a10/
LA  - ru
ID  - IVM_2003_11_a10
ER  - 
%0 Journal Article
%A G. A. Tolstikhina
%A A. M. Shelekhov
%T Multipoint invariants of transformation groups, and three-webs defined by them
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 82-87
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_11_a10/
%G ru
%F IVM_2003_11_a10
G. A. Tolstikhina; A. M. Shelekhov. Multipoint invariants of transformation groups, and three-webs defined by them. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 82-87. http://geodesic.mathdoc.fr/item/IVM_2003_11_a10/

[1] Blyashke V., Vvedenie v geometriyu tkanei, Izd-vo fiz.-matem. literatury, M., 1959, 144 pp. | MR

[2] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Tr. geometrich. semin., 4, VINITI, 1973, 179–204 | MR

[3] Goldberg V. V., “Transversalno-geodezicheskie, shestiugolnye i gruppovye tri-tkani, obrazovannye poverkhnostyami raznykh razmernostei”, Sb. statei po differents. geometrii, Kalininsk. un-t, Kalinin, 1974, 52–69 | MR

[4] Tolstikhina G. A., Shelekhov A. M., O tri-tkanyakh $W(p, q, p+q-1)$, na kotorykh zamykayutsya obobschennye konfiguratsii Reidemeistera, Dep. v VINITI 13.08.01, No 1869-B2001, M., 2001, 46 pp.

[5] Tolstikhina G. A., Shelekhov A. M., “Obobschennaya assotsiativnost v gladkikh gruppoidakh”, Dokl. RAN, 383:1 (2002), 32–33 | MR | Zbl

[6] Tolstikhina G. A., Shelekhov A. M., “Tri-tkani, opredelyaemye gruppami preobrazovanii”, Dokl. RAN, 385:4 (2002), 462–464 | MR

[7] Kulakov Yu. I., “O novom vide simmetrii, lezhaschei v osnovanii fizicheskikh teorii fenomenologicheskogo tipa”, DAN SSSR, 201:3 (1971), 570–572

[8] Belousov V. D., Osnovy teorii kvazigrupp i lup, M., 1967, 223 pp. | MR

[9] Kulakov Yu. I., Vladimirov Yu. S., Karnaukhov A. V., Vvedenie v teoriyu fizicheskikh struktur i binarnuyu geometrofiziku, M., 1992, 182 pp.

[10] Mikhailichenko G. G., Gruppovye svoistva fizicheskikh struktur, Diss. ...dokt. fiz.-matem. nauk, Novosibirsk, 1990, 25 pp.

[11] Tolstikhina G. A., Shelekhov A. M., “Tri-tkan, opredelyaemaya affinnoi gruppoi preobrazovanii”, Tkani i kvazigruppy, Mezhvuz. temat. sb. nauchn. tr., Tversk. un-t, 2002, 46–49 | MR | Zbl