@article{IVM_2003_11_a1,
author = {D. Mar'yana and M. Okumura},
title = {The curvature of $CR$-submanifolds of a complex projective space that have maximal $CR$-dimension},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--23},
year = {2003},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2003_11_a1/}
}
TY - JOUR AU - D. Mar'yana AU - M. Okumura TI - The curvature of $CR$-submanifolds of a complex projective space that have maximal $CR$-dimension JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 15 EP - 23 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2003_11_a1/ LA - ru ID - IVM_2003_11_a1 ER -
D. Mar'yana; M. Okumura. The curvature of $CR$-submanifolds of a complex projective space that have maximal $CR$-dimension. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2003), pp. 15-23. http://geodesic.mathdoc.fr/item/IVM_2003_11_a1/
[1] Cecil T. E., Ryan P. J., “Focal sets and real hypersurfaces in complex projective space”, Trans. Amer. Math. Soc., 269:2 (1982), 481–499 | DOI | MR | Zbl
[2] Takagi R., “On homogeneous real hypersurfaces in a complex projective space”, Osaka J. Math., 10:3 (1973), 495–506 | MR | Zbl
[3] Kimura M., “Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(C)$”, Math. Ann., 276 (1987), 487–497 | DOI | MR | Zbl
[4] Lawson H. B., “Local rigidity theorem in rank-$1$ symmetric spaces”, J. Different. Geom., 4 (1970), 349–357 | MR | Zbl
[5] Okumura M., “On some real hypersurfaces of a complex projective space”, Trans. Amer. Math. Soc., 212 (1975), 355–364 | DOI | MR | Zbl
[6] Nirenberg R., Wells R. O. Jr., “Approximation theorems on differentiable submanifolds of a complex manifold”, Trans. Amer. Math. Soc., 142 (1965), 15–35 | DOI | MR
[7] Blair D. E., Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer, Berlin, 1976, 146 pp. | MR | Zbl
[8] Berndt J., Uber Untermanningfaltigkeiten von komplexen Raumformen, Doct. Dissert., Univ. zu Köln, 1989
[9] Kimura M., “Real hypersurfaces and complex submanifolds in complex projective space”, Trans. Amer. Math. Soc., 296:1 (1986), 137–149 | DOI | MR | Zbl
[10] Tumanov A. E., “The geometry of $CR$ manifolds”, Several complex variables, III, Encyclopedia of Math. Sci., 9 VI, Springer-Verlag, 1986, 201–221
[11] Bejancu A., “$CR$-submanifolds of a Kaehler manifold, I”, Proc. Amer. Math. Soc., 69:1 (1978), 135–142 | DOI | MR | Zbl
[12] Djorić M., Okumura M., “$CR$ submanifolds of maximal $CR$ dimension in complex manifolds”, PDE's, Submanifolds and Affine Different. Geom., Banach Center Publ., 57, Inst. Math., Polish Acad. Sci., Warszawa, 2002, 89–99 | MR | Zbl
[13] Kobayashi S., Nomizu K., Foundations of differential geometry, II, Intersci., New York, 1969, 470 pp. | MR | Zbl
[14] Djorić M., Okumura M., “$CR$ submanifolds of maximal $CR$ dimension of complex projective space”, Arch. Math., 71 (1998), 148–158 | DOI | MR | Zbl
[15] O'Neill B., “Isotropic and Kähler immersions”, Canad. J. Math., 17 (1965), 907–915 | MR
[16] Okumura M., “Codimension reduction problem for real submanifolds of complex projective space”, Colloq. Math. Soc. János Bolyai, 56, 1989, 574–585