On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 62-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_10_a7,
     author = {S. N. Timergaliev},
     title = {On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--69},
     publisher = {mathdoc},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 62
EP  - 69
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/
LA  - ru
ID  - IVM_2003_10_a7
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 62-69
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/
%G ru
%F IVM_2003_10_a7
S. N. Timergaliev. On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 62-69. http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR

[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR | Zbl

[3] Matematicheskaya entsiklopediya, T. 3, Sovetskaya entsiklopediya, M., 1982, 1184 pp.

[4] Timergaliev S. N., “Issledovanie razreshimosti variatsionnykh zadach nelineinoi teorii tonkikh obolochek”, Izv. vuzov. Matematika, 2001, no. 9, 66–74 | MR

[5] Teregulov I. G., Timergaliev S. N., “Metod Rittsa priblizhennogo resheniya kraevykh zadach nelineinoi teorii tonkikh obolochek”, Izv. RAN. MTT, 2002, no. 1, 154–164

[6] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR