On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 62-69
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2003_10_a7,
author = {S. N. Timergaliev},
title = {On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {62--69},
year = {2003},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/}
}
TY - JOUR AU - S. N. Timergaliev TI - On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 62 EP - 69 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/ LA - ru ID - IVM_2003_10_a7 ER -
S. N. Timergaliev. On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 62-69. http://geodesic.mathdoc.fr/item/IVM_2003_10_a7/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR
[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR | Zbl
[3] Matematicheskaya entsiklopediya, T. 3, Sovetskaya entsiklopediya, M., 1982, 1184 pp.
[4] Timergaliev S. N., “Issledovanie razreshimosti variatsionnykh zadach nelineinoi teorii tonkikh obolochek”, Izv. vuzov. Matematika, 2001, no. 9, 66–74 | MR
[5] Teregulov I. G., Timergaliev S. N., “Metod Rittsa priblizhennogo resheniya kraevykh zadach nelineinoi teorii tonkikh obolochek”, Izv. RAN. MTT, 2002, no. 1, 154–164
[6] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR