On the weak sequential completeness of quotient spaces of the space of integrable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 71-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_9_a8,
     author = {G. Sh. Skvortsova},
     title = {On the weak sequential completeness of quotient spaces of the space of integrable operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--74},
     publisher = {mathdoc},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_9_a8/}
}
TY  - JOUR
AU  - G. Sh. Skvortsova
TI  - On the weak sequential completeness of quotient spaces of the space of integrable operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 71
EP  - 74
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_9_a8/
LA  - ru
ID  - IVM_2002_9_a8
ER  - 
%0 Journal Article
%A G. Sh. Skvortsova
%T On the weak sequential completeness of quotient spaces of the space of integrable operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 71-74
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_9_a8/
%G ru
%F IVM_2002_9_a8
G. Sh. Skvortsova. On the weak sequential completeness of quotient spaces of the space of integrable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 71-74. http://geodesic.mathdoc.fr/item/IVM_2002_9_a8/

[1] Bukhvalov A. V., Lozanovskii G. Ya., “O zamknutykh po mere mnozhestvakh v prostranstvakh izmerimykh funktsii”, DAN SSSR, 212:6 (1973), 1273–1275 | MR | Zbl

[2] Skvortsova G. Sh., Tikhonov O. E., “Vypuklye mnozhestva v nekommutativnykh $L^1$-prostranstvakh, zamknutye v topologii lokalnoi skhodimosti po mere”, Izvestiya vuzov. Matematika, 1998, no. 8, 48–55 | MR | Zbl

[3] Skvortsova G. Sh., Nekommutativnyi analog teoremy Bukhvalova–Lozanovskogo o vypuklykh podmnozhestvakh $L_1$, Dep. v VINITI 24.05.2000, No 1489-B00, Kazansk. un-t, Kazan, 2000, 12 pp.

[4] Godefroy G., “Sous-espaces bien disposès de $L^1$-applications”, Trans. Amer. Math. Soc., 286:1 (1984), 227–249 | DOI | MR | Zbl

[5] Ciach L. J., “Some remarks on convergence in measure and on dominated sequence of operators measurable wits respect to a semifinite von Neumann algebra”, Col. Math., LV:1 (1988), 109–121 | MR

[6] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57 (1953), 401–157 | DOI | MR

[7] Takesaki M., Theory of Operator Algebras, V. I, Springer-Verlag, 1979, 415 pp. | MR

[8] Loebl R. I., Muhli P. S., “Analyticity and flows in von Neumann algebras”, J. Func. Anal., 29:2 (1978), 214–252 | DOI | MR | Zbl

[9] Arveson W. B., “Analyticity in operator algebras”, Amer. J. Math., 89:3 (1967), 578–642 | DOI | MR | Zbl