Projection methods for solving the singular integral Theodorsen equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 67-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_9_a7,
     author = {I. K. Rakhimov},
     title = {Projection methods for solving the singular integral {Theodorsen} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--70},
     publisher = {mathdoc},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_9_a7/}
}
TY  - JOUR
AU  - I. K. Rakhimov
TI  - Projection methods for solving the singular integral Theodorsen equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 67
EP  - 70
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_9_a7/
LA  - ru
ID  - IVM_2002_9_a7
ER  - 
%0 Journal Article
%A I. K. Rakhimov
%T Projection methods for solving the singular integral Theodorsen equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 67-70
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_9_a7/
%G ru
%F IVM_2002_9_a7
I. K. Rakhimov. Projection methods for solving the singular integral Theodorsen equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 67-70. http://geodesic.mathdoc.fr/item/IVM_2002_9_a7/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968, 512 pp. | MR

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 638 pp. | MR

[3] Michlin S. G., Prößdorf S., Singuläre Integral-operatoren, Akademie-Verlag, Berlin, 1980, 515 S. | MR | Zbl

[4] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike, Nauka, M., 1985, 256 pp. | MR | Zbl

[5] Lifanov I. K., Tartyshnikov E. E., “Teplitsevy matritsy i singulyarnye integralnye uravneniya”, Vychisl. protsessy i sistemy, no. 7, Nauka, M., 1990, 94–278 | MR

[6] Gaier D., “Numerical methods in conformal mappings”, Comput. Aspects Complex Anal. Proc. NATO Adv. Study Inst. (Braunlage, Harz, July 26 – Aug. 6, 1982), 1983, 51–78 | MR | Zbl

[7] Mokhamed Kh. S., Obosnovanie metoda kvadratur i metoda Nyutona–Kantorovicha dlya nelineinykh singulyarnykh integralnykh uravnenii, Diss. ...kand. fiz.-matem. nauk, Baku, 1985, 107 pp.

[8] Musaev B. I., Konstruktivnye metody v teorii singulyarnykh integralnykh uravnenii, Diss. ...dokt. fiz.-matem. nauk, Tbilisi, 1989, 339 pp.

[9] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[10] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 416 pp. | MR | Zbl

[11] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl

[12] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[13] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda. Chislennyi analiz, Izd-vo Kazansk. un-ta, Kazan, 1994, 288 pp. | MR

[14] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995, 230 pp. | MR

[15] Gabdulkhaev B. G., “Metody resheniya singulyarnykh integralnykh uravnenii s polozhitelnymi operatorami”, Differents. uravneniya, 33:3 (1997), 400–409 | MR | Zbl

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[17] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR

[18] Rakhimov I. K., Pryamye metody resheniya nelineinykh singulyarnykh integralnykh uravnenii s monotonnymi operatorami, Diss. ...kand. fiz.-matem. nauk, Kazan, 1998, 150 pp.