Solution of fundamental boundary value problems for a~$B$-elliptic equation by the potential method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 64-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_9_a6,
     author = {R. M. Mavlyaviev},
     title = {Solution of fundamental boundary value problems for a~$B$-elliptic equation by the potential method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--66},
     publisher = {mathdoc},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_9_a6/}
}
TY  - JOUR
AU  - R. M. Mavlyaviev
TI  - Solution of fundamental boundary value problems for a~$B$-elliptic equation by the potential method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 64
EP  - 66
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_9_a6/
LA  - ru
ID  - IVM_2002_9_a6
ER  - 
%0 Journal Article
%A R. M. Mavlyaviev
%T Solution of fundamental boundary value problems for a~$B$-elliptic equation by the potential method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 64-66
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_9_a6/
%G ru
%F IVM_2002_9_a6
R. M. Mavlyaviev. Solution of fundamental boundary value problems for a~$B$-elliptic equation by the potential method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 64-66. http://geodesic.mathdoc.fr/item/IVM_2002_9_a6/

[1] Panich O. I., “O potentsialakh dlya poligarmonicheskogo uravneniya chetvertogo poryadka”, Matem. sb., 50:3 (1960), 335–368 | Zbl

[2] Mukhlisov F. G., Potentsialy, porozhdennye operatorom obobschennogo sdviga, i kraevye zadachi dlya odnogo klassa singulyarnykh ellipticheskikh uravnenii, Diss. ...dokt. fiz.-matem. nauk, Kazan, 1991, 260 pp. | Zbl

[3] Kipriyanov I. A., Kononenko V. I., “Fundamentalnye resheniya $B$-ellipticheskikh uravnenii”, Differents. uravneniya, 3:1 (1967), 114–129 | Zbl

[4] Weinstein A., “Discontinuous integrals and generalized potential theory”, Trans. Amer. Math. Soc., 63:2 (1948), 342–354 | DOI | MR | Zbl