Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_9_a0, author = {S. N. Vasil'ev}, title = {Fractal interpolation methods of {Barnsley} type}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--14}, publisher = {mathdoc}, number = {9}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_9_a0/} }
S. N. Vasil'ev. Fractal interpolation methods of Barnsley type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2002), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2002_9_a0/
[1] Barnsley M. F., “Fractal functions and interpolation”, Constr. Approx., 1986, no. 2, 303–329 | DOI | MR | Zbl
[2] Barnsley M. F., Elton J. H., Hardin D. P., “Reccurent iterated function systems”, Constr. Approx., 5:1 (1989), 3–31 | DOI | MR | Zbl
[3] Hutchinson J. E., “Fractals and self similarity”, Indiana University Math. Journal, 30:5 (1981), 713–747 | DOI | MR | Zbl
[4] Asanov M. O., Diskretnaya optimizatsiya, Uchebnoe posobie, UralNAUKA, Ekaterinburg, 1998, 206 pp. | Zbl
[5] Passow E., “Piecewise monotone spline interpolation”, J. Approx. Theor., 12:3 (1974), 240–241 | DOI | MR | Zbl
[6] Kocić Lj. M., “Monotone interpolation by fractal functions”, Approxim. and Optimiz., Proc. Intern. Conf., V. 1 (ICAOR, Cluj-Napoca, 1996), Transilvania Press, Cluj-Napoca, 291–298 | MR | Zbl
[7] Vasilyev S. N., “Interpolation by fractal functions preserving monotonicity and convexity”, East Journal on Approximations, 3:4 (1997), 381–392 | MR | Zbl