On duality in spaces of polyharmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2002), pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_8_a11,
     author = {A. A. Shlapunov},
     title = {On duality in spaces of polyharmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--81},
     publisher = {mathdoc},
     number = {8},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_8_a11/}
}
TY  - JOUR
AU  - A. A. Shlapunov
TI  - On duality in spaces of polyharmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 79
EP  - 81
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_8_a11/
LA  - ru
ID  - IVM_2002_8_a11
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%T On duality in spaces of polyharmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 79-81
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_8_a11/
%G ru
%F IVM_2002_8_a11
A. A. Shlapunov. On duality in spaces of polyharmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2002), pp. 79-81. http://geodesic.mathdoc.fr/item/IVM_2002_8_a11/

[1] Khavin V. P., “Prostranstva analiticheskikh funktsii”, Itogi nauki i tekhn. Matem. analiz, VINITI, M., 1966, 76–164

[2] Stout E. L., “Harmonic duality, hyperfunctions and removable singularities”, Izv. RAN. Ser. matem., 59:6 (1995), 133–170 | MR | Zbl

[3] Grothendieck A., “Sur les espaces de solutions d'une classe generale d'equations aux derivees partielles”, J. Anal. Math., 1952–1953, no. 2, 243–280 | DOI | MR

[4] Aizenberg L. A., Gindikin S. G., “Ob obschem vide lineinogo nepreryvnogo funktsionala na prostranstvakh golomorfnykh funktsii”, Uchen. zap. Mosk. obl. ped. in-ta, 137 (1964), 7–15 | MR

[5] Zorn P. M., “Analytic functionals and Bergman spaces”, Ann. Scuola Norm. Sup. Pisa, IX (1982), 365–404 | MR

[6] Nacinovich M., Shlapunov A. A., Tarkhanov N. N., “Duality in the spaces of solutions of elliptic systems”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), XXVI (1998), 207–232 | MR

[7] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991, 318 pp. | MR | Zbl

[8] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR