Equivalence of paths with respect to the action of a~symplectic group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_7_a4,
     author = {K. K. Muminov},
     title = {Equivalence of paths with respect to the action of a~symplectic group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--38},
     publisher = {mathdoc},
     number = {7},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/}
}
TY  - JOUR
AU  - K. K. Muminov
TI  - Equivalence of paths with respect to the action of a~symplectic group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 27
EP  - 38
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/
LA  - ru
ID  - IVM_2002_7_a4
ER  - 
%0 Journal Article
%A K. K. Muminov
%T Equivalence of paths with respect to the action of a~symplectic group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 27-38
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/
%G ru
%F IVM_2002_7_a4
K. K. Muminov. Equivalence of paths with respect to the action of a~symplectic group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 27-38. http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/

[1] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, In. lit., M., 1947, 408 pp.

[2] Dedonne Zh., Kerrol Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974, 280 pp. | MR

[3] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovremen. probl. matem., 55, VINITI, M., 1989, 137–309 | MR

[4] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom podvizhnogo repera, PLATON, Volgograd, 1998, 367 pp.

[5] Aripov R. G., “Ekvivalentnost putei v $n$-mernom kompleksnom vektornom prostranstve otnositelno deistviya gruppy $SO(n, R)$”, DAN UzSSR, 1986, no. 6, 8–10 | MR | Zbl

[6] Suktaeva A. M., “Ob ekvivalentnosti krivykh v $C^n$ i vosstanovlenii krivykh s tochnostyu do $G$-ekvivalentnosti po ikh differentsialnym invariantam otnositelno deistviya grupp $SL(n, c)$ i $GL(n, C)$”, DAN UzSSR, 1987, no. 6, 11–13

[7] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988, 136 pp. | MR | Zbl

[8] Muminov K. K., “Ratsionalnost polya differentsialnykh invariantov konechnogo chisla putei dlya deistviya gruppy $\mathrm{Sp}(2n, C)$ v $C^{2n}$, obrazuyuschie etogo polya i razdelenie regulyarnykh orbit differentsialnymi invariantami”, DAN UzSSR, 1987, no. 5, 7–9 | MR | Zbl

[9] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, New York–London, 1973, 448 pp. | MR | Zbl

[10] Kaplanskii I., Vvedenie v differentsialnuyu algebru, In. lit., M., 1959, 88 pp. | MR

[11] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 331 pp. | MR | Zbl

[12] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Ucheb. posobie, Nauka, M., 1986, 303 pp. | MR