Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_7_a4, author = {K. K. Muminov}, title = {Equivalence of paths with respect to the action of a~symplectic group}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--38}, publisher = {mathdoc}, number = {7}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/} }
K. K. Muminov. Equivalence of paths with respect to the action of a~symplectic group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 27-38. http://geodesic.mathdoc.fr/item/IVM_2002_7_a4/
[1] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, In. lit., M., 1947, 408 pp.
[2] Dedonne Zh., Kerrol Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974, 280 pp. | MR
[3] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovremen. probl. matem., 55, VINITI, M., 1989, 137–309 | MR
[4] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom podvizhnogo repera, PLATON, Volgograd, 1998, 367 pp.
[5] Aripov R. G., “Ekvivalentnost putei v $n$-mernom kompleksnom vektornom prostranstve otnositelno deistviya gruppy $SO(n, R)$”, DAN UzSSR, 1986, no. 6, 8–10 | MR | Zbl
[6] Suktaeva A. M., “Ob ekvivalentnosti krivykh v $C^n$ i vosstanovlenii krivykh s tochnostyu do $G$-ekvivalentnosti po ikh differentsialnym invariantam otnositelno deistviya grupp $SL(n, c)$ i $GL(n, C)$”, DAN UzSSR, 1987, no. 6, 11–13
[7] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988, 136 pp. | MR | Zbl
[8] Muminov K. K., “Ratsionalnost polya differentsialnykh invariantov konechnogo chisla putei dlya deistviya gruppy $\mathrm{Sp}(2n, C)$ v $C^{2n}$, obrazuyuschie etogo polya i razdelenie regulyarnykh orbit differentsialnymi invariantami”, DAN UzSSR, 1987, no. 5, 7–9 | MR | Zbl
[9] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, New York–London, 1973, 448 pp. | MR | Zbl
[10] Kaplanskii I., Vvedenie v differentsialnuyu algebru, In. lit., M., 1959, 88 pp. | MR
[11] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 331 pp. | MR | Zbl
[12] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Ucheb. posobie, Nauka, M., 1986, 303 pp. | MR