An algorithm for constructing a~quasi-regular asymptotic representation for the solution of singularly perturbed linear multi-point boundary value problems with fast and slow variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_7_a2,
     author = {Yu. A. Konyaev},
     title = {An algorithm for constructing a~quasi-regular asymptotic representation for the solution of singularly perturbed linear multi-point boundary value problems with fast and slow variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--21},
     publisher = {mathdoc},
     number = {7},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a2/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
TI  - An algorithm for constructing a~quasi-regular asymptotic representation for the solution of singularly perturbed linear multi-point boundary value problems with fast and slow variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 14
EP  - 21
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_7_a2/
LA  - ru
ID  - IVM_2002_7_a2
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%T An algorithm for constructing a~quasi-regular asymptotic representation for the solution of singularly perturbed linear multi-point boundary value problems with fast and slow variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 14-21
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_7_a2/
%G ru
%F IVM_2002_7_a2
Yu. A. Konyaev. An algorithm for constructing a~quasi-regular asymptotic representation for the solution of singularly perturbed linear multi-point boundary value problems with fast and slow variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 14-21. http://geodesic.mathdoc.fr/item/IVM_2002_7_a2/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990, 108 pp. | MR

[2] Panfilov N. G., “O mnogotochechnykh kraevykh zadachakh dlya lineinykh sistem differentsialnykh singulyarno vozmuschennykh uravnenii”, Ukr. matem. zhurn., 32:2 (1980), 234–239 | MR | Zbl

[3] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981, 400 pp. | MR

[4] Konyaev Yu. A., “Konstruktivnye metody issledovaniya mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matematika, 1992, no. 2, 57–61 | MR | Zbl

[5] Konyaev Yu. A., “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuschenii”, Matem. sb., 1993, no. 12, 133–144 | Zbl

[6] Konyaev Yu. A., “Kontrastnye resheniya singulyarno vozmuschennykh mnogotochechnykh kraevykh zadach s osobennostyami”, Matem. zametki, 56:4 (1994), 95–101 | MR | Zbl

[7] Konyaev Yu. A., “Singulyarno vozmuschennye nelineinye kraevye zadachi pri nalichii tozhdestvennykh i netozhdestvennykh rezonansov”, Vestn. Mosk. energ. in-ta, 1996, no. 6, 96–102

[8] Konyaev Yu. A., “Ob odnoznachnoi razreshimosti nekotorykh klassov regulyarnykh i singulyarno vozmuschennykh kraevykh zadach”, Differents. uravneniya, 35:8 (1999), 1028–1035 | MR | Zbl

[9] Konyaev Yu. A., “Metod rasschepleniya v teorii regulyarnykh i singulyarnykh vozmuschenii”, Izv. vuzov. Matematika, 2000, no. 6, 10–15 | MR | Zbl

[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976, 576 pp. | MR

[11] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Ucheb. posobie, Nauka, M., 1986, 272 pp. | MR | Zbl