Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_7_a1, author = {V. V. Dubrovskii and L. V. Smirnova}, title = {On the reconstruction of the potential in the inverse {Robin} problem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--13}, publisher = {mathdoc}, number = {7}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/} }
TY - JOUR AU - V. V. Dubrovskii AU - L. V. Smirnova TI - On the reconstruction of the potential in the inverse Robin problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 8 EP - 13 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/ LA - ru ID - IVM_2002_7_a1 ER -
V. V. Dubrovskii; L. V. Smirnova. On the reconstruction of the potential in the inverse Robin problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/
[1] Ambartsumian V., “Über eine Frage der Eigenwerttheorie”, Zeitschrift für Physik, 53 (1929), 690–695 | DOI
[2] Borg G., “Eine Umkehrung der Sturm–Liouvillschen Eigenwert aufgabe”, Acta. Math., 78:1 (1946), 1–96 | DOI | MR | Zbl
[3] Levinson N., “The inverse Sturm–Liouville problem”, Math. Tidsskr. B, 1949, 25–30 | MR
[4] Levinson N., “On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase”, Danske Vid. Selsk. Mat. Fys. Medd., 25:9 (1949), 25 | MR
[5] Berezanskii Yu. M., “O teoreme edinstvennosti v obratnoi zadache spektralnogo analiza dlya uravneniya Shredingera”, Tr. Mosk. matem. ob-va, 7, no. 3, 1958, 3–62
[6] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984, 240 pp. | MR
[7] Ramm A. G., Mnogomernye obratnye zadachi rasseyaniya, Mir, M., 1994, 469 pp. | Zbl
[8] Dubrovskii V. V., Velikikh A. S., “Teorema o suschestvovanii resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa”, Elektromagnitnye volny i elektronnye sistemy, 1998, no. 5, 6–9
[9] Nachman F., Sylvester J., Uhlmann G., “An $n$-dimensional Borg–Levinson theorem”, J. Math. Phys., 115 (1988), 595–605 | DOI | MR | Zbl
[10] Ramm A. C., “Multidimensional inverse problems and completeness of the products of solutions to PDE”, J. Math. Anal. Appl., 134 (1988), 211–253 | DOI | MR | Zbl
[11] Suzuki T., Ultrahyperbolic approach to some multidimensional inverse problems, Proc. Japan Acad., 1988, 64 pp. | MR
[12] Isozaki H., “Some remarks on the multidimensional Borg–Levinson theorem”, J. Math. Kyoto Univ., 31:3 (1991), 743–753 | MR | Zbl
[13] Dubrovskii V. V., “K ustoichivosti obratnykh zadach spektralnogo analiza dlya uravnenii matematicheskoi fiziki”, Tr. Mosk. matem. ob-va, 49, no. 3, 1994, 171–172 | MR
[14] Dubrovskii V. V., “K mnogomernoi obratnoi zadache spektralnogo analiza”, Tr. Mosk. matem. ob-va, 49, no. 3, 1994, 229–230
[15] Dubrovskii V. V., “Teorema o edinstvennosti resheniya obratnykh zadach spektralnogo analiza”, Differents. uravneniya, 33:3 (1997), 421–422 | MR
[16] Dubrovskii V. V., “Ob odnom neravenstve v obratnykh zadachakh spektralnogo analiza”, Differents. uravneniya, 33:6 (1997), 843–844 | MR
[17] Dubrovskii V. V., “K abstraktnoi formule Gelfanda–Levitana”, UMN, 46:3 (1991), 187–188 | MR