On the reconstruction of the potential in the inverse Robin problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 8-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_7_a1,
     author = {V. V. Dubrovskii and L. V. Smirnova},
     title = {On the reconstruction of the potential in the inverse {Robin} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--13},
     publisher = {mathdoc},
     number = {7},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/}
}
TY  - JOUR
AU  - V. V. Dubrovskii
AU  - L. V. Smirnova
TI  - On the reconstruction of the potential in the inverse Robin problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 8
EP  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/
LA  - ru
ID  - IVM_2002_7_a1
ER  - 
%0 Journal Article
%A V. V. Dubrovskii
%A L. V. Smirnova
%T On the reconstruction of the potential in the inverse Robin problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 8-13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/
%G ru
%F IVM_2002_7_a1
V. V. Dubrovskii; L. V. Smirnova. On the reconstruction of the potential in the inverse Robin problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2002_7_a1/

[1] Ambartsumian V., “Über eine Frage der Eigenwerttheorie”, Zeitschrift für Physik, 53 (1929), 690–695 | DOI

[2] Borg G., “Eine Umkehrung der Sturm–Liouvillschen Eigenwert aufgabe”, Acta. Math., 78:1 (1946), 1–96 | DOI | MR | Zbl

[3] Levinson N., “The inverse Sturm–Liouville problem”, Math. Tidsskr. B, 1949, 25–30 | MR

[4] Levinson N., “On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase”, Danske Vid. Selsk. Mat. Fys. Medd., 25:9 (1949), 25 | MR

[5] Berezanskii Yu. M., “O teoreme edinstvennosti v obratnoi zadache spektralnogo analiza dlya uravneniya Shredingera”, Tr. Mosk. matem. ob-va, 7, no. 3, 1958, 3–62

[6] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984, 240 pp. | MR

[7] Ramm A. G., Mnogomernye obratnye zadachi rasseyaniya, Mir, M., 1994, 469 pp. | Zbl

[8] Dubrovskii V. V., Velikikh A. S., “Teorema o suschestvovanii resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa”, Elektromagnitnye volny i elektronnye sistemy, 1998, no. 5, 6–9

[9] Nachman F., Sylvester J., Uhlmann G., “An $n$-dimensional Borg–Levinson theorem”, J. Math. Phys., 115 (1988), 595–605 | DOI | MR | Zbl

[10] Ramm A. C., “Multidimensional inverse problems and completeness of the products of solutions to PDE”, J. Math. Anal. Appl., 134 (1988), 211–253 | DOI | MR | Zbl

[11] Suzuki T., Ultrahyperbolic approach to some multidimensional inverse problems, Proc. Japan Acad., 1988, 64 pp. | MR

[12] Isozaki H., “Some remarks on the multidimensional Borg–Levinson theorem”, J. Math. Kyoto Univ., 31:3 (1991), 743–753 | MR | Zbl

[13] Dubrovskii V. V., “K ustoichivosti obratnykh zadach spektralnogo analiza dlya uravnenii matematicheskoi fiziki”, Tr. Mosk. matem. ob-va, 49, no. 3, 1994, 171–172 | MR

[14] Dubrovskii V. V., “K mnogomernoi obratnoi zadache spektralnogo analiza”, Tr. Mosk. matem. ob-va, 49, no. 3, 1994, 229–230

[15] Dubrovskii V. V., “Teorema o edinstvennosti resheniya obratnykh zadach spektralnogo analiza”, Differents. uravneniya, 33:3 (1997), 421–422 | MR

[16] Dubrovskii V. V., “Ob odnom neravenstve v obratnykh zadachakh spektralnogo analiza”, Differents. uravneniya, 33:6 (1997), 843–844 | MR

[17] Dubrovskii V. V., “K abstraktnoi formule Gelfanda–Levitana”, UMN, 46:3 (1991), 187–188 | MR