An analogue of Picard's theorem for a~convolution equation of the first kind with a~smooth kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_7_a0,
     author = {A. F. Voronin},
     title = {An analogue of {Picard's} theorem for a~convolution equation of the first kind with a~smooth kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {7},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - An analogue of Picard's theorem for a~convolution equation of the first kind with a~smooth kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 3
EP  - 7
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/
LA  - ru
ID  - IVM_2002_7_a0
ER  - 
%0 Journal Article
%A A. F. Voronin
%T An analogue of Picard's theorem for a~convolution equation of the first kind with a~smooth kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 3-7
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/
%G ru
%F IVM_2002_7_a0
A. F. Voronin. An analogue of Picard's theorem for a~convolution equation of the first kind with a~smooth kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 3-7. http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/

[1] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl

[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR

[3] Krasnov M. L., Integralnye uravneniya vvedenie v teoriyu, Ucheb. posobie, Nauka, M., 1975, 304 pp. | MR | Zbl

[4] Tovmasyan N. E., Kosheleva T. M., “Ob odnom metode nakhozhdeniya nulei analiticheskikh funktsii i ego primenenie dlya resheniya kraevykh zadach”, Sib. matem. zhurn., 36:5 (1995), 1146–1156 | MR | Zbl