An analogue of Picard's theorem for a convolution equation of the first kind with a smooth kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2002_7_a0,
author = {A. F. Voronin},
title = {An analogue of {Picard's} theorem for a~convolution equation of the first kind with a~smooth kernel},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--7},
year = {2002},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/}
}
A. F. Voronin. An analogue of Picard's theorem for a convolution equation of the first kind with a smooth kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2002), pp. 3-7. http://geodesic.mathdoc.fr/item/IVM_2002_7_a0/
[1] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl
[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR
[3] Krasnov M. L., Integralnye uravneniya vvedenie v teoriyu, Ucheb. posobie, Nauka, M., 1975, 304 pp. | MR | Zbl
[4] Tovmasyan N. E., Kosheleva T. M., “Ob odnom metode nakhozhdeniya nulei analiticheskikh funktsii i ego primenenie dlya resheniya kraevykh zadach”, Sib. matem. zhurn., 36:5 (1995), 1146–1156 | MR | Zbl