Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_6_a1, author = {V. V. Vlasov}, title = {On the basis property of a~family of exponential solutions of differential-difference equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {7--13}, publisher = {mathdoc}, number = {6}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_6_a1/} }
TY - JOUR AU - V. V. Vlasov TI - On the basis property of a~family of exponential solutions of differential-difference equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 7 EP - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_6_a1/ LA - ru ID - IVM_2002_6_a1 ER -
V. V. Vlasov. On the basis property of a~family of exponential solutions of differential-difference equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2002), pp. 7-13. http://geodesic.mathdoc.fr/item/IVM_2002_6_a1/
[1] Vlasov V. V., “Ob otsenkakh reshenii differentsialno-raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matematika, 2000, no. 4, 14–22 | MR | Zbl
[2] Vlasov V. V., Sakbaev V. Zh., “O korrektnoi razreshimosti nekotorykh differentsialno-raznostnykh uravnenii v prostranstvakh Soboleva”, Matem. zametki, 68:6 (2000), 939–942 | MR | Zbl
[3] Vlasov V. V., “O svoistvakh sistemy eksponentsialnykh reshenii differentsialno-raznostnykh uravnenii v prostranstvakh Soboleva”, Izv. vuzov. Matematika, 2001, no. 6, 23–29 | MR | Zbl
[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl
[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR
[6] Zverkin A. M., “Razlozhenie v ryad reshenii lineinykh differentsialno-raznostnykh uravnenii. Ch. 1: Kvazipolinomy”, Tr. semin. po teorii differents. uravnenii s otklonyayusch. argumentom, T. 3, M., 1965, 3–37 | MR
[7] Vlasov V. V., “Korrektnaya razreshimost odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1996, no. 1, 22–35 | MR | Zbl
[8] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR
[9] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[10] Miloslavskii A. I., “Ob ustoichivosti nekotorykh klassov evolyutsionnykh uravnenii”, Sib. matem. zhurn., 26:5 (1985), 118–132 | MR
[11] Vlasov V. V., “Ob odnom klasse differentsialno-raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matematika, 1999, no. 2, 20–29 | MR | Zbl
[12] Vlasov V. V., “Nekotorye svoistva sistemy elementarnykh reshenii differentsialno-raznostnykh uravnenii”, UMN, 51:1 (1996), 143–144 | MR | Zbl
[13] Vlasov V. V., “O nekotorykh spektralnykh voprosakh, voznikayuschikh v teorii differentsialno-raznostnykh uravnenii”, UMN, 53:4 (1998), 217–218 | MR | Zbl
[14] Vlasov V. V., “Nekotorye svoistva silnykh i eksponentsialnykh reshenii differentsialno-raznostnykh uravnenii neitralnogo tipa”, Dokl. RAN, 364:5 (1999), 583–585 | MR | Zbl
[15] Lunel S. V., Yakubovich D. V., “A functional model approach to linear neutral functional differential equations”, Integral Equat. and Oper. Theory, 27 (1997), 347–378 | DOI | MR | Zbl
[16] Delfour M. C., Manitius A., “A structural operator $F$ and its role in the theory of retarded systems, II”, J. Math. Anal. and Appl., 74 (1980), 359–381 | DOI | MR | Zbl
[17] Lunel S. V., “Series expansions and small solutions for Volterra equations of convolution type”, J. Different. Equat., 85:1 (1990), 17–53 | DOI | MR | Zbl
[18] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl
[19] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Tr. MIAN im. V. A. Steklova, 227, 1999, 109–121 | MR | Zbl