Geometry of homogeneous $\Phi$-spaces of order~5
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2002), pp. 70-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_5_a9,
     author = {Yu. D. Churbanov},
     title = {Geometry of homogeneous $\Phi$-spaces of order~5},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--81},
     publisher = {mathdoc},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_5_a9/}
}
TY  - JOUR
AU  - Yu. D. Churbanov
TI  - Geometry of homogeneous $\Phi$-spaces of order~5
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 70
EP  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_5_a9/
LA  - ru
ID  - IVM_2002_5_a9
ER  - 
%0 Journal Article
%A Yu. D. Churbanov
%T Geometry of homogeneous $\Phi$-spaces of order~5
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 70-81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_5_a9/
%G ru
%F IVM_2002_5_a9
Yu. D. Churbanov. Geometry of homogeneous $\Phi$-spaces of order~5. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2002), pp. 70-81. http://geodesic.mathdoc.fr/item/IVM_2002_5_a9/

[1] Stepanov N. A., “Osnovnye fakty teorii $\varphi$-prostranstv”, Izv. vuzov. Matematika, 1967, no. 3, 88–95 | MR | Zbl

[2] Balaschenko V. V., Stepanov N. A., “Kanonicheskie affinornye struktury klassicheskogo tipa na regulyarnykh $\Phi$-prostranstvakh”, Matem. sb., 186:11 (1995), 3–34 | MR | Zbl

[3] Stepanov N. A., “Pochti kompleksnye struktury na $\varphi$-prostranstvakh”, 3-ya mezhvuz. nauchn. konf. po probl. geometrii, Tez. dokl., Kazan, 1967, 158–160

[4] Tsagas Gr., Xenos Ph., “Relation between almost complex structures and Lie bracket for a special homogeneous spaces”, Tensor, 41:3 (1984), 278–284 | MR | Zbl

[5] Xenos Ph., “Properties of the homogeneous spaces of order five”, Bull. of the Calcutta Math. Soc., 78:5 (1986), 293–302 | MR | Zbl

[6] Kovalskii O., Obobschennye simmetricheskie prostranstva, Mir, M., 1984, 240 pp. | MR

[7] Balaschenko V. V., Churbanov Yu. D., “Invariantnye struktury na odnorodnykh $\Phi$-prostranstvakh poryadka 5”, UMN, 45:1 (1980), 169–170 | MR | Zbl

[8] Stepanov N. A., “Odnorodnye 3-tsiklicheskie prostranstva”, Izv. vuzov. Matematika, 1967, no. 12, 65–74 | MR | Zbl

[9] Balashchenko V. V., Riemannian geometry of cannonical structures on regular $\Phi$-spaces, Preprint No 174/1994, Fakultat für Mathematik der Ruhr-Universitat Bochum, 1994, P. 1–19

[10] Churbanov Yu. D., “O nekotorykh klassakh odnorodnykh $\Phi$-prostranstv poryadka 5”, Izv. vuzov. Matematika, 1992, no. 2, 88–90 | MR | Zbl

[11] Churbanov Yu. D., “Kanonicheskie $f$-struktury odnorodnykh $\Phi$-prostranstv poryadka 5”, Vestn. Belorussk. un-ta. Ser. 1, 1994, no. 1, 51–54 | MR | Zbl

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981, 416 pp.

[13] Stepanov N. A., “O reduktivnosti faktor-prostranstv, porozhdennykh endomorfizmami grupp Li”, Izv. vuzov. Matematika, 1967, no. 2, 74–79 | MR | Zbl

[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR

[15] Balaschenko V. V., “Invariantnye osnascheniya i indutsirovannye svyaznosti na regulyarnykh $\Phi$-prostranstvakh lineinykh grupp Li”, Dokl. AN BSSR, 23:3 (1979), 209–212 | MR

[16] Balaschenko V. V., “Indutsirovannye svyaznosti na odnorodnykh 3-tsiklicheskikh prostranstvakh lineinykh grupp Li”, Differents. geometriya mnogoobrazii figur, no. 18, Kaliningrad, 1987, 10–13

[17] Balashchenko V., “Extending an idea of a Gray: homogeneous $k$-symmetric spaces and generalized Hermitian geometry”, Intern. Conf. on Diff. Geometry in memory of A. Gray, Abstracts (Bilbao (Spain). September 18–23, 2000)