A~generalized recurrent symmetric tensor field
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2002), pp. 48-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_5_a6,
     author = {M. V. Smolnikova},
     title = {A~generalized recurrent symmetric tensor field},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--51},
     publisher = {mathdoc},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_5_a6/}
}
TY  - JOUR
AU  - M. V. Smolnikova
TI  - A~generalized recurrent symmetric tensor field
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 48
EP  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_5_a6/
LA  - ru
ID  - IVM_2002_5_a6
ER  - 
%0 Journal Article
%A M. V. Smolnikova
%T A~generalized recurrent symmetric tensor field
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 48-51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_5_a6/
%G ru
%F IVM_2002_5_a6
M. V. Smolnikova. A~generalized recurrent symmetric tensor field. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2002), pp. 48-51. http://geodesic.mathdoc.fr/item/IVM_2002_5_a6/

[1] Maralabhavi Y. B., Rathnamma M., “Generalized recurrent and concircular recurrent manifolds”, Indian J. Pure appl. Math., 30:11 (1999), 1167–1171 | MR | Zbl

[2] Smolnikova M. V., “Ob odnom svoistve rimanovykh mnogoobrazii znakoopredelennoi sektsionnoi krivizny”, XI Mezhdunarodn. letnyaya shkola-seminar po sovremennym problemam teoreticheskoi i matematicheskoi fiziki, Tez. dokl., Kheter, Kazan, 1999, 62

[3] Yano K., “On torse-forming directions in Riemannian space”, Proc. Imp. Acad. Tokyo, 20 (1944), 340–345 | DOI | MR | Zbl

[4] Patterson E. M., “Some theorems on Ricci-recurrent spaces”, J. London Math. Soc., 27 (1969), 287–295 | DOI | MR

[5] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990, 384 pp. | MR | Zbl

[6] Roter W., “Some indefinite metrics and covariant derivatives of their curvature tensors”, Colloquium Math., LXII (1991), 283–287 | MR