Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 64-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_4_a9,
     author = {E. A. Shirokova},
     title = {Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--71},
     publisher = {mathdoc},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/}
}
TY  - JOUR
AU  - E. A. Shirokova
TI  - Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 64
EP  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/
LA  - ru
ID  - IVM_2002_4_a9
ER  - 
%0 Journal Article
%A E. A. Shirokova
%T Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 64-71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/
%G ru
%F IVM_2002_4_a9
E. A. Shirokova. Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 64-71. http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR

[2] Shirokova E. A., “O svedenii resheniya obratnoi kraevoi zadachi k resheniyu uravneniya Fredgolma”, Izv. vuzov. Matematika, 1994, no. 8, 72–80 | MR | Zbl

[3] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. semin. po kraev. zadacham, 10, Izd-vo. Kazansk.un-ta, 1973, 11–24 | MR

[4] Aksentev L. A., “Ob odnolistnosti resheniya obratnoi zadachi gidromekhaniki”, Izv. vuzov. Matematika, 1961, no. 4, 3–7 | MR

[5] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl

[6] Krasnovidova I. S., Rogozhin V. S., “Dostatochnye usloviya odnolistnosti resheniya obratnoi kraevoi zadachi”, UMN, 8:1 (1953), 151–153 | MR | Zbl

[7] Aksentev L. A., “Usloviya odnolistnosti resheniya osnovnykh obratnykh kraevykh zadach”, UMN, 15:6 (1960), 119–124 | MR

[8] Aksentev L. A., “Geometricheskie voprosy v obratnykh kraevykh zadachakh”, Tr. semin. po obratnym kraev. zadacham, no. 1, Izd-vo Kazansk. un-ta, 1964, 14–18 | MR

[9] Kudryashov S. N., “Nekotorye kriterii vypuklosti v odnom napravlenii resheniya vnutrennei obratnoi kraevoi zadachi”, Tr. semin. po obratnym kraev. zadacham, no. 2, Izd-vo Kazansk. un-ta, 1964, 76–83

[10] Avkhadiev F. G., Gaiduk V. N., “Primenenie pochti vypuklykh funktsii k obratnym kraevym zadacham”, Izv. vuzov. Matematika, 1968, no. 6, 3–10 | MR | Zbl

[11] Maier F. F., “Podchinenie v nekotorykh klassakh analiticheskikh funktsii i ego primenenie”, Tr. semin. po obratnym kraev. zadacham, no. 24, Izd-vo Kazansk. un-ta, 1990, 144–152 | MR

[12] Lavrentev M. A., “O nekotorykh granichnykh zadachakh v teorii odnolistnykh funktsii”, Matem. sb., 1(43):6 (1936), 815–846 | Zbl

[13] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazanskii fond “Matematika”, 1996, 216 pp. | MR | Zbl

[14] Shirokova E. A., “Poluchenie klassov dannykh dlya korrektnoi postanovki obratnoi kraevoi zadachi s pomoschyu pereparametrizatsii vypukloi krivoi”, Tr. Matematicheskogo tsentra imeni N. I. Lobachevskogo, 5, “UNIPRESS”, Kazan, 2000, 229–300