Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_4_a9, author = {E. A. Shirokova}, title = {Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--71}, publisher = {mathdoc}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/} }
TY - JOUR AU - E. A. Shirokova TI - Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 64 EP - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/ LA - ru ID - IVM_2002_4_a9 ER -
E. A. Shirokova. Obtaining data classes for the well-posedness of an inverse boundary value problem by reparametrization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 64-71. http://geodesic.mathdoc.fr/item/IVM_2002_4_a9/
[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR
[2] Shirokova E. A., “O svedenii resheniya obratnoi kraevoi zadachi k resheniyu uravneniya Fredgolma”, Izv. vuzov. Matematika, 1994, no. 8, 72–80 | MR | Zbl
[3] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. semin. po kraev. zadacham, 10, Izd-vo. Kazansk.un-ta, 1973, 11–24 | MR
[4] Aksentev L. A., “Ob odnolistnosti resheniya obratnoi zadachi gidromekhaniki”, Izv. vuzov. Matematika, 1961, no. 4, 3–7 | MR
[5] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl
[6] Krasnovidova I. S., Rogozhin V. S., “Dostatochnye usloviya odnolistnosti resheniya obratnoi kraevoi zadachi”, UMN, 8:1 (1953), 151–153 | MR | Zbl
[7] Aksentev L. A., “Usloviya odnolistnosti resheniya osnovnykh obratnykh kraevykh zadach”, UMN, 15:6 (1960), 119–124 | MR
[8] Aksentev L. A., “Geometricheskie voprosy v obratnykh kraevykh zadachakh”, Tr. semin. po obratnym kraev. zadacham, no. 1, Izd-vo Kazansk. un-ta, 1964, 14–18 | MR
[9] Kudryashov S. N., “Nekotorye kriterii vypuklosti v odnom napravlenii resheniya vnutrennei obratnoi kraevoi zadachi”, Tr. semin. po obratnym kraev. zadacham, no. 2, Izd-vo Kazansk. un-ta, 1964, 76–83
[10] Avkhadiev F. G., Gaiduk V. N., “Primenenie pochti vypuklykh funktsii k obratnym kraevym zadacham”, Izv. vuzov. Matematika, 1968, no. 6, 3–10 | MR | Zbl
[11] Maier F. F., “Podchinenie v nekotorykh klassakh analiticheskikh funktsii i ego primenenie”, Tr. semin. po obratnym kraev. zadacham, no. 24, Izd-vo Kazansk. un-ta, 1990, 144–152 | MR
[12] Lavrentev M. A., “O nekotorykh granichnykh zadachakh v teorii odnolistnykh funktsii”, Matem. sb., 1(43):6 (1936), 815–846 | Zbl
[13] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazanskii fond “Matematika”, 1996, 216 pp. | MR | Zbl
[14] Shirokova E. A., “Poluchenie klassov dannykh dlya korrektnoi postanovki obratnoi kraevoi zadachi s pomoschyu pereparametrizatsii vypukloi krivoi”, Tr. Matematicheskogo tsentra imeni N. I. Lobachevskogo, 5, “UNIPRESS”, Kazan, 2000, 229–300