A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_4_a4,
     author = {I. T. Denisyuk},
     title = {A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--35},
     publisher = {mathdoc},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/}
}
TY  - JOUR
AU  - I. T. Denisyuk
TI  - A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 29
EP  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/
LA  - ru
ID  - IVM_2002_4_a4
ER  - 
%0 Journal Article
%A I. T. Denisyuk
%T A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 29-35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/
%G ru
%F IVM_2002_4_a4
I. T. Denisyuk. A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 29-35. http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/

[1] Denisyuk I. T., “Reshenie odnoi zadachi sopryazheniya dlya sostavnoi oblasti s uglovymi tochkami na liniyakh razdela”, Izv. vuzov. Matematika, 1996, no. 6, 17–24 | MR | Zbl

[2] Denisyuk I. T., “Odna zadacha sopryazheniya analiticheskikh funktsii v affinno preobrazovannykh oblastyakh s kusochno-gladkimi granitsami”, Izv. vuzov. Matematika, 2000, no. 6, 70–74 | MR | Zbl

[3] Sedov L. I., Mekhanika sploshnoi sredy, T. 1, Nauka, M., 1973, 536 pp.

[4] Sedov L. I., Mekhanika sploshnoi sredy, T. 2, Nauka, M., 1973, 568 pp. | MR

[5] Denisyuk I. T., “Napryazhennoe sostoyanie vblizi osoboi linii poverkhnosti razdela sred”, Izv. RAN. Mekhan. tverd. tela, 1995, no. 5, 64–70

[6] Norden A. P., Kratkii kurs differentsialnoi geometrii, GIFML, M., 1958, 244 pp.

[7] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Ucheb. posobie. T. 3, Nauka, M., 1969, 656 pp.

[8] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1979, 280 pp. | MR

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Ch. 1, Nauka, M., 1974, 296 pp.

[10] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Ucheb. posobie, Nauka, M., 1981, 688 pp. | MR

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[12] Denisyuk I. T., “Termouprugost izotropnoi plastinki s uglovymi vklyucheniyami”, Izv. RAN. Mekhan. tverd. tela, 1999, no. 2, 148–155

[13] Denisyuk I. T., “Odna model tonkikh uprugikh vklyuchenii v izotropnoi plastinke”, Izv. RAN. Mekhan. tverd. tela, 2000, no. 4, 140–148