Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_4_a4, author = {I. T. Denisyuk}, title = {A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {29--35}, publisher = {mathdoc}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/} }
TY - JOUR AU - I. T. Denisyuk TI - A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 29 EP - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/ LA - ru ID - IVM_2002_4_a4 ER -
I. T. Denisyuk. A~conjugation problem for harmonic functions in three-dimensional domains with nonsmooth boundaries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 29-35. http://geodesic.mathdoc.fr/item/IVM_2002_4_a4/
[1] Denisyuk I. T., “Reshenie odnoi zadachi sopryazheniya dlya sostavnoi oblasti s uglovymi tochkami na liniyakh razdela”, Izv. vuzov. Matematika, 1996, no. 6, 17–24 | MR | Zbl
[2] Denisyuk I. T., “Odna zadacha sopryazheniya analiticheskikh funktsii v affinno preobrazovannykh oblastyakh s kusochno-gladkimi granitsami”, Izv. vuzov. Matematika, 2000, no. 6, 70–74 | MR | Zbl
[3] Sedov L. I., Mekhanika sploshnoi sredy, T. 1, Nauka, M., 1973, 536 pp.
[4] Sedov L. I., Mekhanika sploshnoi sredy, T. 2, Nauka, M., 1973, 568 pp. | MR
[5] Denisyuk I. T., “Napryazhennoe sostoyanie vblizi osoboi linii poverkhnosti razdela sred”, Izv. RAN. Mekhan. tverd. tela, 1995, no. 5, 64–70
[6] Norden A. P., Kratkii kurs differentsialnoi geometrii, GIFML, M., 1958, 244 pp.
[7] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Ucheb. posobie. T. 3, Nauka, M., 1969, 656 pp.
[8] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1979, 280 pp. | MR
[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Ch. 1, Nauka, M., 1974, 296 pp.
[10] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Ucheb. posobie, Nauka, M., 1981, 688 pp. | MR
[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl
[12] Denisyuk I. T., “Termouprugost izotropnoi plastinki s uglovymi vklyucheniyami”, Izv. RAN. Mekhan. tverd. tela, 1999, no. 2, 148–155
[13] Denisyuk I. T., “Odna model tonkikh uprugikh vklyuchenii v izotropnoi plastinke”, Izv. RAN. Mekhan. tverd. tela, 2000, no. 4, 140–148