Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_4_a2, author = {A. F. Voronin}, title = {On the well-posedness of a~boundary value problem on a~line for three analytic functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--23}, publisher = {mathdoc}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a2/} }
TY - JOUR AU - A. F. Voronin TI - On the well-posedness of a~boundary value problem on a~line for three analytic functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 18 EP - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_4_a2/ LA - ru ID - IVM_2002_4_a2 ER -
A. F. Voronin. On the well-posedness of a~boundary value problem on a~line for three analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 18-23. http://geodesic.mathdoc.fr/item/IVM_2002_4_a2/
[1] Akhiezer N. A., Lektsii ob integralnykh preobrazovaniyakh, Vischa shkola, Kharkov, 1984, 120 pp. | MR | Zbl
[2] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963, 640 pp. | MR
[3] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl
[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, 3-e izd., Nauka, M., 1968, 512 pp. | MR
[5] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilissk. matem. in-ta AN GruzSSR, 23 (1956), 3–158
[6] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977, 448 pp. | MR | Zbl
[7] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986, 240 pp. | MR | Zbl
[8] Voronin A. F., “Kraevaya zadacha Rimana dlya poluploskosti s koeffitsientom, eksponentsialno ubyvayuschim na beskonechnosti”, Izv. vuzov. Matematika, 2001, no. 9, 20–23 | MR | Zbl
[9] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR