Local structure of a~surface of inner conformal radius for a~plane domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_4_a0,
     author = {L. A. Aksent'ev},
     title = {Local structure of a~surface of inner conformal radius for a~plane domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/}
}
TY  - JOUR
AU  - L. A. Aksent'ev
TI  - Local structure of a~surface of inner conformal radius for a~plane domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 3
EP  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/
LA  - ru
ID  - IVM_2002_4_a0
ER  - 
%0 Journal Article
%A L. A. Aksent'ev
%T Local structure of a~surface of inner conformal radius for a~plane domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 3-12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/
%G ru
%F IVM_2002_4_a0
L. A. Aksent'ev. Local structure of a~surface of inner conformal radius for a~plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/

[1] Minda D., Wright D. J., “Univalence criteria and the hyperbolic metric in convex regions”, Rocky Mtn. J. Math., 12 (1982), 471–479 | MR | Zbl

[2] Kim S.-A., Minda D., “The hyperbolic and quasihyperbolic metrics in convex regions”, J. Anal., 1 (1993), 109–118 | MR | Zbl

[3] Kovalev L. V., “Differentsialnye svoistva konformnogo radiusa”, Tez. dokl. 3-i Dalnevostochnoi konf. po matem. modelir., Vladivostok, 1999, 31 | Zbl

[4] Aksentev L. A., Mikka V. P., “O povedenii konformnogo radiusa v podklassakh odnolistnykh oblastei”, Izv. vuzov. Matematika, 2001, no. 8, 20–28 | MR

[5] Kovalev L. V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Diss. ...kand. fiz.-matem. nauk, Vladivostok, 2000, 106 pp.

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR

[7] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR

[8] Gakhov F. D., Kraevye zadachi, 3-e izd., Nauka, M., 1977, 640 pp. | MR

[9] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, 2-e izd., Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR