Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_4_a0, author = {L. A. Aksent'ev}, title = {Local structure of a~surface of inner conformal radius for a~plane domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/} }
L. A. Aksent'ev. Local structure of a~surface of inner conformal radius for a~plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2002), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2002_4_a0/
[1] Minda D., Wright D. J., “Univalence criteria and the hyperbolic metric in convex regions”, Rocky Mtn. J. Math., 12 (1982), 471–479 | MR | Zbl
[2] Kim S.-A., Minda D., “The hyperbolic and quasihyperbolic metrics in convex regions”, J. Anal., 1 (1993), 109–118 | MR | Zbl
[3] Kovalev L. V., “Differentsialnye svoistva konformnogo radiusa”, Tez. dokl. 3-i Dalnevostochnoi konf. po matem. modelir., Vladivostok, 1999, 31 | Zbl
[4] Aksentev L. A., Mikka V. P., “O povedenii konformnogo radiusa v podklassakh odnolistnykh oblastei”, Izv. vuzov. Matematika, 2001, no. 8, 20–28 | MR
[5] Kovalev L. V., Privedennye moduli i teoremy iskazheniya v teorii odnolistnykh funktsii, Diss. ...kand. fiz.-matem. nauk, Vladivostok, 2000, 106 pp.
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR
[7] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR
[8] Gakhov F. D., Kraevye zadachi, 3-e izd., Nauka, M., 1977, 640 pp. | MR
[9] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, 2-e izd., Izd-vo Kazansk. un-ta, Kazan, 1965, 333 pp. | MR