On direct methods for solving integral equations with logarithmically weakened Cauchy kernels on open curves
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 73-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_3_a8,
     author = {A. F. Galimyanov},
     title = {On direct methods for solving integral equations with logarithmically weakened {Cauchy} kernels on open curves},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--77},
     publisher = {mathdoc},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_3_a8/}
}
TY  - JOUR
AU  - A. F. Galimyanov
TI  - On direct methods for solving integral equations with logarithmically weakened Cauchy kernels on open curves
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 73
EP  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_3_a8/
LA  - ru
ID  - IVM_2002_3_a8
ER  - 
%0 Journal Article
%A A. F. Galimyanov
%T On direct methods for solving integral equations with logarithmically weakened Cauchy kernels on open curves
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 73-77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_3_a8/
%G ru
%F IVM_2002_3_a8
A. F. Galimyanov. On direct methods for solving integral equations with logarithmically weakened Cauchy kernels on open curves. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 73-77. http://geodesic.mathdoc.fr/item/IVM_2002_3_a8/

[1] Gabdulkhaev B. G., “Konechnomernye approksimatsii singulyarnykh integralov i pryamye metody resheniya osobykh integralnykh i integrodifferentsialnykh uravnenii”, Itogi nauki i tekhn. Matem. analiz, 18, Izd-vo VINITI AN SSSR, M., 1980, 251–307 | MR

[2] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995, 232 pp. | MR

[3] Ivanov V. V., “Metody priblizhennogo resheniya singulyarnykh integralnykh uravnenii”, Itogi nauki i tekhn. Matem. analiz, Izd-vo VINITI AN SSSR, M., 1965, 125–177

[4] Agachev Yu. R., Splainovye priblizheniya reshenii integralnykh i differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Kazan, 1987, 144 pp.

[5] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980, 414 pp. | MR

[6] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR