Casimir elements of $\mathbb Z$-forms of modular Lie algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 32-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_3_a3,
     author = {N. A. Koreshkov},
     title = {Casimir elements of $\mathbb Z$-forms of modular {Lie} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--35},
     publisher = {mathdoc},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_3_a3/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Casimir elements of $\mathbb Z$-forms of modular Lie algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 32
EP  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_3_a3/
LA  - ru
ID  - IVM_2002_3_a3
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Casimir elements of $\mathbb Z$-forms of modular Lie algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 32-35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_3_a3/
%G ru
%F IVM_2002_3_a3
N. A. Koreshkov. Casimir elements of $\mathbb Z$-forms of modular Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 32-35. http://geodesic.mathdoc.fr/item/IVM_2002_3_a3/

[1] Dzhumadildaev A. S., “Obobschennye elementy Kazimira”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 1107–1117 | MR

[2] Bedratyuk L. P., Simmetricheskie invarianty modulyarnykh algebr Li, Dis. ...kand. fiz.-matem. nauk, M., 1995, 81 pp.