A~differential turning point in the theory of singular perturbations.~I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_3_a0,
     author = {V. N. Bobochko},
     title = {A~differential turning point in the theory of singular {perturbations.~I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_3_a0/}
}
TY  - JOUR
AU  - V. N. Bobochko
TI  - A~differential turning point in the theory of singular perturbations.~I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_3_a0/
LA  - ru
ID  - IVM_2002_3_a0
ER  - 
%0 Journal Article
%A V. N. Bobochko
%T A~differential turning point in the theory of singular perturbations.~I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 3-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_3_a0/
%G ru
%F IVM_2002_3_a0
V. N. Bobochko. A~differential turning point in the theory of singular perturbations.~I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2002), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2002_3_a0/

[1] Langer R., “The asymptotic solutions of ordinary linear differential equations of the second order with special reference to a turning point”, Trans. Amer. Math. Soc., 67 (1949), 461–490 | DOI | MR | Zbl

[2] Langer R., “On the asymptotic forms of ordinary linear differential equations of the third order in a region containing a turning point”, Trans. Amer. Math. Soc., 80 (1955), 93–123 | DOI | MR | Zbl

[3] Langer R., “The solutions of a class of ordinary linear differential equations of the third order in a region containing a multiple turning point”, Duke Math. J., 23 (1956), 93–110 | DOI | MR | Zbl

[4] Langer R., “Formal solutions and a related equation for a class of fourth order differential equations of a hydrodynamic type”, Trans. Amer. Math. Soc., 92 (1959), 371–410 | DOI | MR | Zbl

[5] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, UMN, 7:6 (1952), 3–96

[6] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981, 400 pp. | MR

[7] Bobochko V. N., “Asimptoticheskoe integrirovanie sistemy differentsialnykh uravnenii s tochkoi povorota”, Differents. uravneniya, 27:9 (1991), 1505–1515 | MR

[8] Bobochko V. N., “Uravnenie tipa Orra–Zommerfelda s dvumya tochkami povorota”, Differents. uravneniya, 28:10 (1992), 1559–1570 | MR

[9] Bobochko V. N., “Vnutrennyaya tochka povorota v teorii singulyarnykh vozmuschenii”, Ukr. matem. zhurn., 48:7 (1996), 876–890 | MR | Zbl

[10] Bobochko V. N., “Sistemy differentsialnykh uravnenii s silnoi tochkoi povorota”, Ukr. matem. zhurn., 49:11 (1997), 1543–1547 | MR | Zbl

[11] Bobochko V. N., “Sistema differentsialnykh uravnenii s nestabilnoi tochkoi povorota”, Red. zhurn. “Izv. vuzov. Matematika”, no. 3, 1997, 73

[12] Bobochko V. N., “Sistema differentsialnykh uravnenii s tochkoi povorota v sluchae nediagonaliziruemogo predelnogo operatora”, Differents. uravneniya, 34:10 (1998), 1304–1312 | MR | Zbl

[13] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968, 464 pp.

[14] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[15] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl